二维坐标中,两点可以连成线,多个点连成的线就构成了图。
当然图也可以就一个节点,甚至没有节点(空图)
整体上一般分为 有向图 和 无向图。
有向图是指 图中边是有方向的:
无向图是指 图中边没有方向:
加权有向图,就是图中边是有权值的,
加权无向图也是同理。
无向图中有几条边连接该节点,该节点就有几度。
在有向图中,每个节点有出度和入度。
在图中表示节点的连通情况,我们称之为连通性。
连通图
在无向图中,任何两个节点都是可以到达的,我们称之为连通图。
如果有节点不能到达其他节点,则为非连通图,
强连通图
在有向图中,任何两个节点是可以相互到达的,我们称之为 强连通图。
强连通图是在有向图中任何两个节点是可以相互到达
连通分量
在无向图中的极大连通子图称之为该图的一个连通分量。
必须是极大联通子图才能是连通分量
强连通分量
在有向图中极大强连通子图称之为该图的强连通分量
我们如何用代码来表示一个图呢?
一般使用邻接表、邻接矩阵 或者用类来表示。
主要是 朴素存储、邻接表和邻接矩阵。
邻接矩阵 使用 二维数组来表示图结构。 邻接矩阵是从节点的角度来表示图,有多少节点就申请多大的二维数组。
例如: grid[2][5] = 6,表示 节点 2 连接 节点5 为有向图,节点2 指向 节点5,边的权值为6。
如果想表示无向图,即:grid[2][5] = 6,grid[5][2] = 6,表示节点2 与 节点5 相互连通,权值为6。
在一个 n (节点数)为8 的图中,就需要申请 8 * 8 这么大的空间。
图中有一条双向边,即:grid[2][5] = 6,grid[5][2] = 6
这种表达方式(邻接矩阵) 在 边少,节点多的情况下,会导致申请过大的二维数组,造成空间浪费。
而且在寻找节点连接情况的时候,需要遍历整个矩阵,即 n * n 的时间复杂度,同样造成时间浪费。
邻接矩阵的优点:
表达方式简单,易于理解
检查任意两个顶点间是否存在边的操作非常快
适合稠密图,在边数接近顶点数平方的图中,邻接矩阵是一种空间效率较高的表示方法。
缺点:
遇到稀疏图,会导致申请过大的二维数组造成空间浪费 且遍历 边 的时候需要遍历整个n * n矩阵,造成时间浪费
邻接表 使用 数组 + 链表的方式来表示。 邻接表是从边的数量来表示图,有多少边 才会申请对应大小的链表。
有多少边 邻接表才会申请多少个对应的链表节点。
从图中可以直观看出 使用 数组 + 链表 来表达 边的连接情况 。
邻接表的优点:
对于稀疏图的存储,只需要存储边,空间利用率高
遍历节点连接情况相对容易
缺点:
检查任意两个节点间是否存在边,效率相对低,需要 O(V)时间,V表示某节点连接其他节点的数量。
实现相对复杂,不易理解
深度优先搜索(dfs)
广度优先搜索(bfs)
二叉树的递归遍历,是dfs 在二叉树上的遍历方式。
二叉树的层序遍历,是bfs 在二叉树上的遍历方式。
dfs 和 bfs 一种搜索算法,可以在不同的数据结构上进行搜索,在二叉树章节里是在二叉树这样的数据结构上搜索。
而在图论章节,则是在图(邻接表或邻接矩阵)上进行搜索。
dfs是可一个方向去搜,不到黄河不回头,直到遇到绝境了,搜不下去了,再换方向(换方向的过程就涉及到了回溯)。
bfs是先把本节点所连接的所有节点遍历一遍,走到下一个节点的时候,再把连接节点的所有节点遍历一遍,搜索方向更像是广度,四面八方的搜索过程。
上面说道dfs是可一个方向搜,不到黄河不回头。 那么我们来举一个例子。
如图一,是一个无向图,我们要搜索从节点1到节点6的所有路径。
上图演示中,其实我并没有把 所有的 从节点1 到节点6的dfs(深度优先搜索)的过程都画出来,那样太冗余了,但 已经把dfs 关键的地方都涉及到了,关键就两点:
搜索方向,是认准一个方向搜,直到碰壁之后再换方向
换方向是撤销原路径,改为节点链接的下一个路径,回溯的过程。
正是因为dfs搜索可一个方向,并需要回溯,所以用递归的方式来实现是最方便的。
有递归的地方就有回溯,那么回溯在哪里呢?
就递归函数的下面,例如如下代码:
void dfs(参数) {
处理节点
dfs(图,选择的节点); // 递归
回溯,撤销处理结果
}
可以看到回溯操作就在递归函数的下面,递归和回溯是相辅相成的。
回归回溯法的代码框架
void backtracking(参数) {
if (终止条件) {
存放结果;`在这里插入代码片`
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
回溯算法,就是dfs的过程,如下:
void dfs(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本节点所连接的其他节点) {
处理节点;
dfs(图,选择的节点); // 递归
回溯,撤销处理结果
}
}
1、确认递归函数
一般情况,深搜需要 二维数组数组结构保存所有路径,需要一维数组保存单一路径,这种保存结果的数组,我们可以定义一个全局变量,避免让我们的函数参数过多。
例如:
vector<vector<int>> result; // 保存符合条件的所有路径
vector<int> path; // 起点到终点的路径
void dfs (图,目前搜索的节点)
2、确认终止条件
终止条件很重要,很多同学写dfs的时候,之所以容易死循环,栈溢出等等这些问题,都是因为终止条件没有想清楚。
if (终止条件) {
存放结果;
return;
}
终止添加不仅是结束本层递归,同时也是我们收获结果的时候。
另外,其实很多dfs写法,没有写终止条件,其实终止条件写在了, 下面dfs递归的逻辑里了,也就是不符合条件,直接不会向下递归。这里如果大家不理解的话,没关系,后面会有具体题目来讲解。
3、处理目前搜索节点发出的路径
一般这里就是一个for循环的操作,去遍历 目前搜索节点 所能到的所有节点。
for (选择:本节点所连接的其他节点) {
处理节点;
dfs(图,选择的节点); // 递归
回溯,撤销处理结果
}
不少录友疑惑的地方,都是 dfs代码框架中for循环里分明已经处理节点了,那么 dfs函数下面 为什么还要撤销的呢。
如图七所示, 路径2 已经走到了 目的地节点6,那么 路径2 是如何撤销,然后改为 路径3呢? 其实这就是 回溯的过程,撤销路径2,走换下一个方向。
邻接矩阵解法
#include<iostream>
#include <vector>
using namespace std;
vector<vector<int>> result;
vector<int> path;
void dfs(const vector<vector<int>>& graph, int x, int n)
{
if(x == n)
{
result.push_back(path);
return;
}
for(int i = 1; i <= n; i++)//遍历节点x连接的所有节点
{
if(graph[x][i] == 1)//找到x连接的节点
{
path.push_back(i);//遍历到连接的节点装入path;
dfs(graph, i, n);//进入下一层递归;
path.pop_back();//回溯,撤掉本节点;
}
}
}
int main()
{
int n,m,s,t;
cin >> n >> m;
vector<vector<int>> graph(n+1, vector<int>(n+1,0));
while(m--)
{
cin >> s >> t;
graph[s][t] = 1;
}
//从节点0进行出发;
path.push_back(1);
dfs(graph, 1, n);
//s输出结果
if(result.size() == 0) cout << -1 << endl;
for(const vector<int> &pa: result)
{
for(int i = 0; i < pa.size() - 1; i++)
{
cout << pa[i] << " ";
}
cout << pa[pa.size() - 1] << endl;
}
}