①兼职交流,行业咨询、大佬在线专业解答有
②Python开发环境安装教程有
③Python400集自学视频有
④软件开发常用词汇有
⑤Python学习路线图有
⑥3000多本Python电子书有
如果你用得到的话可以直接拿走,Q群号: 675240729(纯技术交流和资源共享)以自助拿走。
import turtle as te
import time
WriteStep = 15 # 贝塞尔函数的取样次数
Speed = 5
Width = 600 # 界面宽度
Height = 500 # 界面高度
Xh = 0 # 记录前一个贝塞尔函数的手柄
Yh = 0
def Bezier(p1, p2, t): # 一阶贝塞尔函数
return p1 * (1 - t) + p2 * t
def Bezier_2(x1, y1, x2, y2, x3, y3): # 二阶贝塞尔函数
te.goto(x1, y1)
te.pendown()
for t in range(0, WriteStep + 1):
x = Bezier(Bezier(x1, x2, t / WriteStep),
Bezier(x2, x3, t / WriteStep), t / WriteStep)
y = Bezier(Bezier(y1, y2, t / WriteStep),
Bezier(y2, y3, t / WriteStep), t / WriteStep)
te.goto(x, y)
te.penup()
def Bezier_3(x1, y1, x2, y2, x3, y3, x4, y4): # 三阶贝塞尔函数
x1 = -Width / 2 + x1
y1 = Height / 2 - y1
x2 = -Width / 2 + x2
y2 = Height / 2 - y2
x3 = -Width / 2 + x3
y3 = Height / 2 - y3
x4 = -Width / 2 + x4
y4 = Height / 2 - y4 # 坐标变换
te.goto(x1, y1)
te.pendown()
for t in range(0, WriteStep + 1):
x = Bezier(Bezier(Bezier(x1, x2, t / WriteStep), Bezier(x2, x3, t / WriteStep), t / WriteStep),
Bezier(Bezier(x2, x3, t / WriteStep), Bezier(x3, x4, t / WriteStep), t / WriteStep), t / WriteStep)
y = Bezier(Bezier(Bezier(y1, y2, t / WriteStep), Bezier(y2, y3, t / WriteStep), t / WriteStep),
Bezier(Bezier(y2, y3, t / WriteStep), Bezier(y3, y4, t / WriteStep), t / WriteStep), t / WriteStep)
te.goto(x, y)
te.penup()
def Moveto(x, y): # 移动到svg坐标下(x,y)
te.penup()
te.goto(-Width / 2 + x, Height / 2 - y)
def line(x1, y1, x2, y2): # 连接svg坐标下两点
te.penup()
te.goto(-Width / 2 + x1, Height / 2 - y1)
te.pendown()
te.goto(-Width / 2 + x2, Height / 2 - y2)
te.penup()
def lineto(dx, dy): # 连接当前点和相对坐标(dx,dy)的点
te.pendown()
te.goto(te.xcor() + dx, te.ycor() - dy)
te.penup()
def Lineto(x, y): # 连接当前点和svg坐标下(x,y)
te.pendown()
te.goto(-Width / 2 + x, Height / 2 - y)
te.penup()
def Horizontal(x): # 做到svg坐标下横坐标为x的水平线
te.pendown()
te.setx(x - Width / 2)
te.penup()
def horizontal(dx): # 做到相对横坐标为dx的水平线
te.seth(0)
te.pendown()
te.fd(dx)
te.penup()
def vertical(dy): # 做到相对纵坐标为dy的垂直线
te.seth(-90)
te.pendown()
te.fd(dy)
te.penup()
te.seth(0)
def polyline(x1, y1, x2, y2, x3, y3): # 做svg坐标下的折线
te.penup()
te.goto(-Width / 2 + x1, Height / 2 - y1)
te.pendown()
te.goto(-Width / 2 + x2, Height / 2 - y2)
te.goto(-Width / 2 + x3, Height / 2 - y3)
te.penup()
def Curveto(x1, y1, x2, y2, x, y): # 三阶贝塞尔曲线到(x,y)
te.penup()
X_now = te.xcor() + Width / 2
Y_now = Height / 2 - te.ycor()
Bezier_3(X_now, Y_now, x1, y1, x2, y2, x, y)
global Xh
global Yh
Xh = x - x2
Yh = y - y2
def curveto_r(x1, y1, x2, y2, x, y): # 三阶贝塞尔曲线到相对坐标(x,y)
te.penup()
X_now = te.xcor() + Width / 2
Y_now = Height / 2 - te.ycor()
Bezier_3(X_now, Y_now, X_now + x1, Y_now + y1,
X_now + x2, Y_now + y2, X_now + x, Y_now + y)
global Xh
global Yh
Xh = x - x2
Yh = y - y2
def Smooth(x2, y2, x, y): # 平滑三阶贝塞尔曲线到(x,y)
global Xh
global Yh
te.penup()
X_now = te.xcor() + Width / 2
Y_now = Height / 2 - te.ycor()
Bezier_3(X_now, Y_now, X_now + Xh, Y_now + Yh, x2, y2, x, y)
Xh = x - x2
Yh = y - y2
def smooth_r(x2, y2, x, y): # 平滑三阶贝塞尔曲线到相对坐标(x,y)
global Xh
global Yh
te.penup()
X_now = te.xcor() + Width / 2
Y_now = Height / 2 - te.ycor()
Bezier_3(X_now, Y_now, X_now + Xh, Y_now + Yh,
X_now + x2, Y_now + y2, X_now + x, Y_now + y)
Xh = x - x2
Yh = y - y2
te.tracer(10)
te.setup(Width, Height, 0, 0)
te.pensize(1)
te.speed(Speed)
te.penup()
# 图层_2
time.sleep(20)
te.color("black", "#F2F2F2") # 外套
Moveto(61, 462)
te.begin_fill()
smooth_r(12, -41, 27, -58)
curveto_r(-6, -36, 6, -118, 9, -132<