DWD 层主要完成的功能 :
A、日志结构回顾
页面埋点日志
A、数据
[{"name":"大郎","sex":"男","age":"25"},{"name":"西门庆","sex":"男","age":"47"}]
B、取出第一个 json 对象
hive (gmall)>
select get_json_object('[{"name":"大郎","sex":"男","age":"25"},{"name":"西门庆","sex":"男","age":"47"}]','$[0]');
结果是:{"name":"大郎","sex":"男","age":"25"}
C、取出第一个 json 的 age 字段的值
hive (gmall)>
SELECT get_json_object('[{"name":"大郎","sex":"男","age":"25"},{"name":"西门庆","sex":"男","age":"47"}]',"$[0].age");
结果是:25
启动日志解析思路:启动日志表中每行数据对应一个启动记录,一个启动记录应该包含日志中的公共信息和启动信息。先将所有包含start字段的日志过滤出来,然后使用get_json_object函数解析每个字段。
A、建表语句
DROP TABLE IF EXISTS dwd_start_log;
CREATE EXTERNAL TABLE dwd_start_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`entry` STRING COMMENT 'icon手机图标 notice 通知 install 安装后启动',
`loading_time` BIGINT COMMENT '启动加载时间',
`open_ad_id` STRING COMMENT '广告页ID ',
`open_ad_ms` BIGINT COMMENT '广告总共播放时间',
`open_ad_skip_ms` BIGINT COMMENT '用户跳过广告时点',
`ts` BIGINT COMMENT '时间'
) COMMENT '启动日志表'
PARTITIONED BY (`dt` STRING) -- 按照时间创建分区
STORED AS PARQUET -- 采用parquet列式存储
LOCATION '/warehouse/gmall/dwd/dwd_start_log' -- 指定在HDFS上存储位置
TBLPROPERTIES('parquet.compression'='lzo') -- 采用LZO压缩
;
B、数据导入
hive (gmall)>
insert overwrite table dwd_start_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.start.entry'),
get_json_object(line,'$.start.loading_time'),
get_json_object(line,'$.start.open_ad_id'),
get_json_object(line,'$.start.open_ad_ms'),
get_json_object(line,'$.start.open_ad_skip_ms'),
get_json_object(line,'$.ts')
from ods_log
where dt='2020-06-14'
and get_json_object(line,'$.start') is not null;
C、查看数据
hive (gmall)>
select * from dwd_start_log where dt='2020-06-14' limit 2;
页面日志解析思路:页面日志表中每行数据对应一个页面访问记录,一个页面访问记录应该包含日志中的公共信息和页面信息。先将所有包含 page 字段的日志过滤出来,然后使用 get_json_object 函数解析每个字段。
页面日志表解析:
A、建表语句
DROP TABLE IF EXISTS dwd_page_log;
CREATE EXTERNAL TABLE dwd_page_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`during_time` BIGINT COMMENT '持续时间毫秒',
`page_item` STRING COMMENT '目标id ',
`page_item_type` STRING COMMENT '目标类型',
`last_page_id` STRING COMMENT '上页类型',
`page_id` STRING COMMENT '页面ID ',
`source_type` STRING COMMENT '来源类型',
`ts` bigint
) COMMENT '页面日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_page_log'
TBLPROPERTIES('parquet.compression'='lzo');
B、数据导入
hive (gmall)>
insert overwrite table dwd_page_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.ts')
from ods_log
where dt='2020-06-14'
and get_json_object(line,'$.page') is not null;
C、查看数据
hive (gmall)>
select * from dwd_page_log where dt='2020-06-14' limit 2;
动作日志解析思路:动作日志表中每行数据对应用户的一个动作记录,一个动作记录应当包含公共信息、页面信息以及动作信息。先将包含action字段的日志过滤出来,然后通过 UDTF 函数,将action数组 “炸开”(类似于explode函数的效果),然后使用 get_json_object 函数解析每个字段。
动作日志表解析:
A、建表语句
DROP TABLE IF EXISTS dwd_action_log;
CREATE EXTERNAL TABLE dwd_action_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`during_time` BIGINT COMMENT '持续时间毫秒',
`page_item` STRING COMMENT '目标id ',
`page_item_type` STRING COMMENT '目标类型',
`last_page_id` STRING COMMENT '上页类型',
`page_id` STRING COMMENT '页面id ',
`source_type` STRING COMMENT '来源类型',
`action_id` STRING COMMENT '动作id',
`item` STRING COMMENT '目标id ',
`item_type` STRING COMMENT '目标类型',
`ts` BIGINT COMMENT '时间'
) COMMENT '动作日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_action_log'
TBLPROPERTIES('parquet.compression'='lzo');
B、创建 UDTF 函数 —— 设计思路
UDTF 思想:
C、创建UDTF函数 —— 编写代码
(1)创建一个 maven 工程:hivefunction
(2)创建包名:com.fancy.hive.udtf
(3)引入如下依赖
<dependencies>
<!--添加hive依赖-->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>3.1.2</version>
</dependency>
</dependencies>
(4)编码
package com.fancy.hive.udtf;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.json.JSONArray;
import java.util.ArrayList;
import java.util.List;
public class ExplodeJSONArray extends GenericUDTF {
@Override
public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException {
// 1 参数合法性检查
if (argOIs.length != 1) {
throw new UDFArgumentException("explode_json_array 只需要一个参数");
}
// 2 第一个参数必须为string
//判断参数是否为基础数据类型
if (argOIs[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
throw new UDFArgumentException("explode_json_array 只接受基础类型参数");
}
//将参数对象检查器强转为基础类型对象检查器
PrimitiveObjectInspector argumentOI = (PrimitiveObjectInspector) argOIs[0];
//判断参数是否为String类型
if (argumentOI.getPrimitiveCategory() != PrimitiveObjectInspector.PrimitiveCategory.STRING) {
throw new UDFArgumentException("explode_json_array 只接受string类型的参数");
}
// 3 定义返回值名称和类型
List<String> fieldNames = new ArrayList<String>();
List<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
fieldNames.add("items");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
}
public void process(Object[] objects) throws HiveException {
// 1 获取传入的数据
String jsonArray = objects[0].toString();
// 2 将string转换为json数组
JSONArray actions = new JSONArray(jsonArray);
// 3 循环一次,取出数组中的一个json,并写出
for (int i = 0; i < actions.length(); i++) {
String[] result = new String[1];
result[0] = actions.getString(i);
forward(result);
}
}
public void close() throws HiveException {
}
}
D、创建函数
(1)打包
(2)将 hivefunction-1.0-SNAPSHOT.jar 上传到 node101 的 /opt/module,然后再将该 jar 包上传到 HDFS 的 /user/hive/jars 路径下
[fancy@node101 module]$ hadoop fs -mkdir -p /user/hive/jars
[fancy@node101 module]$ hadoop fs -put hivefunction-1.0-SNAPSHOT.jar /user/hive/jars
(3)创建永久函数与开发好的java class关联
create function explode_json_array as 'com.fancy.hive.udtf.ExplodeJSONArray' using jar 'hdfs://hadoop102:8020/user/hive/jars/hivefunction-1.0-SNAPSHOT.jar';
注意:
如果修改了自定义函数重新生成 jar 包怎么处理?只需要替换HDFS 路径上的旧 jar 包,然后重启 Hive 客户端即可。
E、数据导入
insert overwrite table dwd_action_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(action,'$.action_id'),
get_json_object(action,'$.item'),
get_json_object(action,'$.item_type'),
get_json_object(action,'$.ts')
from ods_log lateral view explode_json_array(get_json_object(line,'$.actions')) tmp as action
where dt='2020-06-14'
and get_json_object(line,'$.actions') is not null;
F、查看数据
select * from dwd_action_log where dt='2020-06-14' limit 2;
曝光日志解析思路:曝光日志表中每行数据对应一个曝光记录,一个曝光记录应当包含公共信息、页面信息以及曝光信息。先将包含 display 字段的日志过滤出来,然后通过 UDTF 函数,将 display 数组 “炸开”(类似于 explode 函数的效果),然后使用 get_json_object 函数解析每个字段。
曝光日志表解析
A、建表语句
DROP TABLE IF EXISTS dwd_display_log;
CREATE EXTERNAL TABLE dwd_display_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`during_time` BIGINT COMMENT 'app版本号',
`page_item` STRING COMMENT '目标id ',
`page_item_type` STRING COMMENT '目标类型',
`last_page_id` STRING COMMENT '上页类型',
`page_id` STRING COMMENT '页面ID ',
`source_type` STRING COMMENT '来源类型',
`ts` BIGINT COMMENT 'app版本号',
`display_type` STRING COMMENT '曝光类型',
`item` STRING COMMENT '曝光对象id ',
`item_type` STRING COMMENT 'app版本号',
`order` BIGINT COMMENT '曝光顺序',
`pos_id` BIGINT COMMENT '曝光位置'
) COMMENT '曝光日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_display_log'
TBLPROPERTIES('parquet.compression'='lzo');
B、数据导入
insert overwrite table dwd_display_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.ts'),
get_json_object(display,'$.display_type'),
get_json_object(display,'$.item'),
get_json_object(display,'$.item_type'),
get_json_object(display,'$.order'),
get_json_object(display,'$.pos_id')
from ods_log lateral view explode_json_array(get_json_object(line,'$.displays')) tmp as display
where dt='2020-06-14'
and get_json_object(line,'$.displays') is not null;
C、查看数据
select * from dwd_display_log where dt='2020-06-14' limit 2;
错误日志解析思路:错误日志表中每行数据对应一个错误记录,为方便定位错误,一个错误记录应当包含与之对应的公共信息、页面信息、曝光信息、动作信息、启动信息以及错误信息。先将包含err字段的日志过滤出来,然后使用 get_json_object 函数解析所有字段。
A、建表语句
DROP TABLE IF EXISTS dwd_error_log;
CREATE EXTERNAL TABLE dwd_error_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`page_item` STRING COMMENT '目标id ',
`page_item_type` STRING COMMENT '目标类型',
`last_page_id` STRING COMMENT '上页类型',
`page_id` STRING COMMENT '页面ID ',
`source_type` STRING COMMENT '来源类型',
`entry` STRING COMMENT ' icon手机图标 notice 通知 install 安装后启动',
`loading_time` STRING COMMENT '启动加载时间',
`open_ad_id` STRING COMMENT '广告页ID ',
`open_ad_ms` STRING COMMENT '广告总共播放时间',
`open_ad_skip_ms` STRING COMMENT '用户跳过广告时点',
`actions` STRING COMMENT '动作',
`displays` STRING COMMENT '曝光',
`ts` STRING COMMENT '时间',
`error_code` STRING COMMENT '错误码',
`msg` STRING COMMENT '错误信息'
) COMMENT '错误日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_error_log'
TBLPROPERTIES('parquet.compression'='lzo');
说明:此处为对动作数组和曝光数组做处理,如需分析错误与单个动作或曝光的关联,可先使用 explode_json_array 函数将数组“炸开”,再使用get_json_object 函数获取具体字段。
D、数据导入
insert overwrite table dwd_error_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.start.entry'),
get_json_object(line,'$.start.loading_time'),
get_json_object(line,'$.start.open_ad_id'),
get_json_object(line,'$.start.open_ad_ms'),
get_json_object(line,'$.start.open_ad_skip_ms'),
get_json_object(line,'$.actions'),
get_json_object(line,'$.displays'),
get_json_object(line,'$.ts'),
get_json_object(line,'$.err.error_code'),
get_json_object(line,'$.err.msg')
from ods_log
where dt='2020-06-14'
and get_json_object(line,'$.err') is not null;
D、查看数据
hive (gmall)>
select * from dwd_error_log where dt='2020-06-14' limit 2;
A、编写脚本
[fancy@node101 bin]$ vim ods_to_dwd_log.sh
在脚本中编写如下内容
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
dwd_start_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_start_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.start.entry'),
get_json_object(line,'$.start.loading_time'),
get_json_object(line,'$.start.open_ad_id'),
get_json_object(line,'$.start.open_ad_ms'),
get_json_object(line,'$.start.open_ad_skip_ms'),
get_json_object(line,'$.ts')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.start') is not null;"
dwd_page_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_page_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.ts')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.page') is not null;"
dwd_action_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_action_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(action,'$.action_id'),
get_json_object(action,'$.item'),
get_json_object(action,'$.item_type'),
get_json_object(action,'$.ts')
from ${APP}.ods_log lateral view ${APP}.explode_json_array(get_json_object(line,'$.actions')) tmp as action
where dt='$do_date'
and get_json_object(line,'$.actions') is not null;"
dwd_display_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_display_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.ts'),
get_json_object(display,'$.display_type'),
get_json_object(display,'$.item'),
get_json_object(display,'$.item_type'),
get_json_object(display,'$.order'),
get_json_object(display,'$.pos_id')
from ${APP}.ods_log lateral view ${APP}.explode_json_array(get_json_object(line,'$.displays')) tmp as display
where dt='$do_date'
and get_json_object(line,'$.displays') is not null;"
dwd_error_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_error_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.start.entry'),
get_json_object(line,'$.start.loading_time'),
get_json_object(line,'$.start.open_ad_id'),
get_json_object(line,'$.start.open_ad_ms'),
get_json_object(line,'$.start.open_ad_skip_ms'),
get_json_object(line,'$.actions'),
get_json_object(line,'$.displays'),
get_json_object(line,'$.ts'),
get_json_object(line,'$.err.error_code'),
get_json_object(line,'$.err.msg')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.err') is not null;"
case $1 in
dwd_start_log )
hive -e "$dwd_start_log"
;;
dwd_page_log )
hive -e "$dwd_page_log"
;;
dwd_action_log )
hive -e "$dwd_action_log"
;;
dwd_display_log )
hive -e "$dwd_display_log"
;;
dwd_error_log )
hive -e "$dwd_error_log"
;;
all )
hive -e "$dwd_start_log$dwd_page_log$dwd_action_log$dwd_display_log$dwd_error_log"
;;
esac
增加脚本执行权限
[fancy@node101 bin]$ chmod 777 ods_to_dwd_log.sh
B、脚本使用
执行脚本
[fancy@node101 module]$ ods_to_dwd_log.sh all 2020-06-14
查询导入结果
业务数据方面DWD层的搭建主要注意点在于维度建模。
A、建表语句
DROP TABLE IF EXISTS dwd_comment_info;
CREATE EXTERNAL TABLE dwd_comment_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`sku_id` STRING COMMENT '商品sku',
`spu_id` STRING COMMENT '商品spu',
`order_id` STRING COMMENT '订单ID',
`appraise` STRING COMMENT '评价(好评、中评、差评、默认评价)',
`create_time` STRING COMMENT '评价时间'
) COMMENT '评价事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_comment_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
B、分区规划
C、数据装载
1.首日装载
insert overwrite table dwd_comment_info partition (dt)
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
create_time,
date_format(create_time,'yyyy-MM-dd')
from ods_comment_info
where dt='2020-06-14';
2.每日装载
insert overwrite table dwd_comment_info partition(dt='2020-06-15')
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
create_time
from ods_comment_info where dt='2020-06-15';
A、建表语句
DROP TABLE IF EXISTS dwd_order_detail;
CREATE EXTERNAL TABLE dwd_order_detail (
`id` STRING COMMENT '订单编号',
`order_id` STRING COMMENT '订单号',
`user_id` STRING COMMENT '用户id',
`sku_id` STRING COMMENT 'sku商品id',
`province_id` STRING COMMENT '省份ID',
`activity_id` STRING COMMENT '活动ID',
`activity_rule_id` STRING COMMENT '活动规则ID',
`coupon_id` STRING COMMENT '优惠券ID',
`create_time` STRING COMMENT '创建时间',
`source_type` STRING COMMENT '来源类型',
`source_id` STRING COMMENT '来源编号',
`sku_num` BIGINT COMMENT '商品数量',
`original_amount` DECIMAL(16,2) COMMENT '原始价格',
`split_activity_amount` DECIMAL(16,2) COMMENT '活动优惠分摊',
`split_coupon_amount` DECIMAL(16,2) COMMENT '优惠券优惠分摊',
`split_final_amount` DECIMAL(16,2) COMMENT '最终价格分摊'
) COMMENT '订单明细事实表表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_order_detail/'
TBLPROPERTIES ("parquet.compression"="lzo");
B、分区规划
C、数据装载
1.首日装载
insert overwrite table dwd_order_detail partition(dt)
select
od.id,
od.order_id,
oi.user_id,
od.sku_id,
oi.province_id,
oda.activity_id,
oda.activity_rule_id,
odc.coupon_id,
od.create_time,
od.source_type,
od.source_id,
od.sku_num,
od.order_price*od.sku_num,
od.split_activity_amount,
od.split_coupon_amount,
od.split_final_amount,
date_format(create_time,'yyyy-MM-dd')
from
(
select
*
from ods_order_detail
where dt='2020-06-14'
)od
left join
(
select
id,
user_id,
province_id
from ods_order_info
where dt='2020-06-14'
)oi
on od.order_id=oi.id
left join
(
select
order_detail_id,
activity_id,
activity_rule_id
from ods_order_detail_activity
where dt='2020-06-14'
)oda
on od.id=oda.order_detail_id
left join
(
select
order_detail_id,
coupon_id
from ods_order_detail_coupon
where dt='2020-06-14'
)odc
on od.id=odc.order_detail_id;
2.每日装载
insert overwrite table dwd_order_detail partition(dt='2020-06-15')
select
od.id,
od.order_id,
oi.user_id,
od.sku_id,
oi.province_id,
oda.activity_id,
oda.activity_rule_id,
odc.coupon_id,
od.create_time,
od.source_type,
od.source_id,
od.sku_num,
od.order_price*od.sku_num,
od.split_activity_amount,
od.split_coupon_amount,
od.split_final_amount
from
(
select
*
from ods_order_detail
where dt='2020-06-15'
)od
left join
(
select
id,
user_id,
province_id
from ods_order_info
where dt='2020-06-15'
)oi
on od.order_id=oi.id
left join
(
select
order_detail_id,
activity_id,
activity_rule_id
from ods_order_detail_activity
where dt='2020-06-15'
)oda
on od.id=oda.order_detail_id
left join
(
select
order_detail_id,
coupon_id
from ods_order_detail_coupon
where dt='2020-06-15'
)odc
on od.id=odc.order_detail_id;
A、建表语句
DROP TABLE IF EXISTS dwd_order_refund_info;
CREATE EXTERNAL TABLE dwd_order_refund_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`order_id` STRING COMMENT '订单ID',
`sku_id` STRING COMMENT '商品ID',
`province_id` STRING COMMENT '地区ID',
`refund_type` STRING COMMENT '退单类型',
`refund_num` BIGINT COMMENT '退单件数',
`refund_amount` DECIMAL(16,2) COMMENT '退单金额',
`refund_reason_type` STRING COMMENT '退单原因类型',
`create_time` STRING COMMENT '退单时间'
) COMMENT '退单事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_order_refund_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
B、分区规划
C、数据装载
1.首日装载
insert overwrite table dwd_order_refund_info partition(dt)
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time,
date_format(ri.create_time,'yyyy-MM-dd')
from
(
select * from ods_order_refund_info where dt='2020-06-14'
)ri
left join
(
select id,province_id from ods_order_info where dt='2020-06-14'
)oi
on ri.order_id=oi.id;
2.每日装载
insert overwrite table dwd_order_refund_info partition(dt='2020-06-15')
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time
from
(
select * from ods_order_refund_info where dt='2020-06-15'
)ri
left join
(
select id,province_id from ods_order_info where dt='2020-06-15'
)oi
on ri.order_id=oi.id;
3.查询加载结果
A、建表语句
DROP TABLE IF EXISTS dwd_cart_info;
CREATE EXTERNAL TABLE dwd_cart_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`sku_id` STRING COMMENT '商品ID',
`source_type` STRING COMMENT '来源类型',
`source_id` STRING COMMENT '来源编号',
`cart_price` DECIMAL(16,2) COMMENT '加入购物车时的价格',
`is_ordered` STRING COMMENT '是否已下单',
`create_time` STRING COMMENT '创建时间',
`operate_time` STRING COMMENT '修改时间',
`order_time` STRING COMMENT '下单时间',
`sku_num` BIGINT COMMENT '加购数量'
) COMMENT '加购事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_cart_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
B、分区规划
C、数据装载
1.首日装载
insert overwrite table dwd_cart_info partition(dt='2020-06-14')
select
id,
user_id,
sku_id,
source_type,
source_id,
cart_price,
is_ordered,
create_time,
operate_time,
order_time,
sku_num
from ods_cart_info
where dt='2020-06-14';
2.每日装载
insert overwrite table dwd_cart_info partition(dt='2020-06-15')
select
id,
user_id,
sku_id,
source_type,
source_id,
cart_price,
is_ordered,
create_time,
operate_time,
order_time,
sku_num
from ods_cart_info
where dt='2020-06-15';
A、建表语句
DROP TABLE IF EXISTS dwd_favor_info;
CREATE EXTERNAL TABLE dwd_favor_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户id',
`sku_id` STRING COMMENT 'skuid',
`spu_id` STRING COMMENT 'spuid',
`is_cancel` STRING COMMENT '是否取消',
`create_time` STRING COMMENT '收藏时间',
`cancel_time` STRING COMMENT '取消时间'
) COMMENT '收藏事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_favor_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
B、分区规划
C、数据装载
1.首日装载
insert overwrite table dwd_favor_info partition(dt='2020-06-14')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from ods_favor_info
where dt='2020-06-14';
2.每日装载
insert overwrite table dwd_favor_info partition(dt='2020-06-15')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from ods_favor_info
where dt='2020-06-15';
A、建表语句
DROP TABLE IF EXISTS dwd_coupon_use;
CREATE EXTERNAL TABLE dwd_coupon_use(
`id` STRING COMMENT '编号',
`coupon_id` STRING COMMENT '优惠券ID',
`user_id` STRING COMMENT 'userid',
`order_id` STRING COMMENT '订单id',
`coupon_status` STRING COMMENT '优惠券状态',
`get_time` STRING COMMENT '领取时间',
`using_time` STRING COMMENT '使用时间(下单)',
`used_time` STRING COMMENT '使用时间(支付)',
`expire_time` STRING COMMENT '过期时间'
) COMMENT '优惠券领用事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_coupon_use/'
TBLPROPERTIES ("parquet.compression"="lzo");
B、分区规划
C、数据装载
1.首日装载
insert overwrite table dwd_coupon_use partition(dt)
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time,
coalesce(date_format(used_time,'yyyy-MM-dd'),date_format(expire_time,'yyyy-MM-dd'),'9999-99-99')
from ods_coupon_use
where dt='2020-06-14';
2.每日装载
a.装载逻辑
b.转载语句
insert overwrite table dwd_coupon_use partition(dt)
select
nvl(new.id,old.id),
nvl(new.coupon_id,old.coupon_id),
nvl(new.user_id,old.user_id),
nvl(new.order_id,old.order_id),
nvl(new.coupon_status,old.coupon_status),
nvl(new.get_time,old.get_time),
nvl(new.using_time,old.using_time),
nvl(new.used_time,old.used_time),
nvl(new.expire_time,old.expire_time),
coalesce(date_format(nvl(new.used_time,old.used_time),'yyyy-MM-dd'),date_format(nvl(new.expire_time,old.expire_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time
from dwd_coupon_use
where dt='9999-99-99'
)old
full outer join
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time
from ods_coupon_use
where dt='2020-06-15'
)new
on old.id=new.id;
A、建表语句
DROP TABLE IF EXISTS dwd_payment_info;
CREATE EXTERNAL TABLE dwd_payment_info (
`id` STRING COMMENT '编号',
`order_id` STRING COMMENT '订单编号',
`user_id` STRING COMMENT '用户编号',
`province_id` STRING COMMENT '地区ID',
`trade_no` STRING COMMENT '交易编号',
`out_trade_no` STRING COMMENT '对外交易编号',
`payment_type` STRING COMMENT '支付类型',
`payment_amount` DECIMAL(16,2) COMMENT '支付金额',
`payment_status` STRING COMMENT '支付状态',
`create_time` STRING COMMENT '创建时间',--调用第三方支付接口的时间
`callback_time` STRING COMMENT '完成时间'--支付完成时间,即支付成功回调时间
) COMMENT '支付事实表表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_payment_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
B、分区规划
C、数据装载
1.首日装载
insert overwrite table dwd_payment_info partition(dt)
select
pi.id,
pi.order_id,
pi.user_id,
oi.province_id,
pi.trade_no,
pi.out_trade_no,
pi.payment_type,
pi.payment_amount,
pi.payment_status,
pi.create_time,
pi.callback_time,
nvl(date_format(pi.callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(
select * from ods_payment_info where dt='2020-06-14'
)pi
left join
(
select id,province_id from ods_order_info where dt='2020-06-14'
)oi
on pi.order_id=oi.id;
2.每日装载
insert overwrite table dwd_payment_info partition(dt)
select
nvl(new.id,old.id),
nvl(new.order_id,old.order_id),
nvl(new.user_id,old.user_id),
nvl(new.province_id,old.province_id),
nvl(new.trade_no,old.trade_no),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.payment_type,old.payment_type),
nvl(new.payment_amount,old.payment_amount),
nvl(new.payment_status,old.payment_status),
nvl(new.create_time,old.create_time),
nvl(new.callback_time,old.callback_time),
nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select id,
order_id,
user_id,
province_id,
trade_no,
out_trade_no,
payment_type,
payment_amount,
payment_status,
create_time,
callback_time
from dwd_payment_info
where dt = '9999-99-99'
)old
full outer join
(
select
pi.id,
pi.out_trade_no,
pi.order_id,
pi.user_id,
oi.province_id,
pi.payment_type,
pi.trade_no,
pi.payment_amount,
pi.payment_status,
pi.create_time,
pi.callback_time
from
(
select * from ods_payment_info where dt='2020-06-15'
)pi
left join
(
select id,province_id from ods_order_info where dt='2020-06-15'
)oi
on pi.order_id=oi.id
)new
on old.id=new.id;
A、建表语句
DROP TABLE IF EXISTS dwd_refund_payment;
CREATE EXTERNAL TABLE dwd_refund_payment (
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`order_id` STRING COMMENT '订单编号',
`sku_id` STRING COMMENT 'SKU编号',
`province_id` STRING COMMENT '地区ID',
`trade_no` STRING COMMENT '交易编号',
`out_trade_no` STRING COMMENT '对外交易编号',
`payment_type` STRING COMMENT '支付类型',
`refund_amount` DECIMAL(16,2) COMMENT '退款金额',
`refund_status` STRING COMMENT '退款状态',
`create_time` STRING COMMENT '创建时间',--调用第三方支付接口的时间
`callback_time` STRING COMMENT '回调时间'--支付接口回调时间,即支付成功时间
) COMMENT '退款事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_refund_payment/'
TBLPROPERTIES ("parquet.compression"="lzo");
B、分区规划
C、数据装载
1.首日装载
insert overwrite table dwd_refund_payment partition(dt)
select
rp.id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time,
nvl(date_format(callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
out_trade_no,
order_id,
sku_id,
payment_type,
trade_no,
refund_amount,
refund_status,
create_time,
callback_time
from ods_refund_payment
where dt='2020-06-14'
)rp
left join
(
select
id,
user_id,
province_id
from ods_order_info
where dt='2020-06-14'
)oi
on rp.order_id=oi.id;
2.每日装载
insert overwrite table dwd_refund_payment partition(dt)
select
nvl(new.id,old.id),
nvl(new.user_id,old.user_id),
nvl(new.order_id,old.order_id),
nvl(new.sku_id,old.sku_id),
nvl(new.province_id,old.province_id),
nvl(new.trade_no,old.trade_no),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.payment_type,old.payment_type),
nvl(new.refund_amount,old.refund_amount),
nvl(new.refund_status,old.refund_status),
nvl(new.create_time,old.create_time),
nvl(new.callback_time,old.callback_time),
nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time
from dwd_refund_payment
where dt='9999-99-99'
)old
full outer join
(
select
rp.id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time
from
(
select
id,
out_trade_no,
order_id,
sku_id,
payment_type,
trade_no,
refund_amount,
refund_status,
create_time,
callback_time
from ods_refund_payment
where dt='2020-06-15'
)rp
left join
(
select
id,
user_id,
province_id
from ods_order_info
where dt='2020-06-15'
)oi
on rp.order_id=oi.id
)new
on old.id=new.id;
D、查询加载结果
A、建表语句
DROP TABLE IF EXISTS dwd_order_info;
CREATE EXTERNAL TABLE dwd_order_info(
`id` STRING COMMENT '编号',
`order_status` STRING COMMENT '订单状态',
`user_id` STRING COMMENT '用户ID',
`province_id` STRING COMMENT '地区ID',
`payment_way` STRING COMMENT '支付方式',
`delivery_address` STRING COMMENT '邮寄地址',
`out_trade_no` STRING COMMENT '对外交易编号',
`tracking_no` STRING COMMENT '物流单号',
`create_time` STRING COMMENT '创建时间(未支付状态)',
`payment_time` STRING COMMENT '支付时间(已支付状态)',
`cancel_time` STRING COMMENT '取消时间(已取消状态)',
`finish_time` STRING COMMENT '完成时间(已完成状态)',
`refund_time` STRING COMMENT '退款时间(退款中状态)',
`refund_finish_time` STRING COMMENT '退款完成时间(退款完成状态)',
`expire_time` STRING COMMENT '过期时间',
`feight_fee` DECIMAL(16,2) COMMENT '运费',
`feight_fee_reduce` DECIMAL(16,2) COMMENT '运费减免',
`activity_reduce_amount` DECIMAL(16,2) COMMENT '活动减免',
`coupon_reduce_amount` DECIMAL(16,2) COMMENT '优惠券减免',
`original_amount` DECIMAL(16,2) COMMENT '订单原始价格',
`final_amount` DECIMAL(16,2) COMMENT '订单最终价格'
) COMMENT '订单事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_order_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
B、分区规划
C、数据装载
1.首日装载
insert overwrite table dwd_order_info partition(dt)
select
oi.id,
oi.order_status,
oi.user_id,
oi.province_id,
oi.payment_way,
oi.delivery_address,
oi.out_trade_no,
oi.tracking_no,
oi.create_time,
times.ts['1002'] payment_time,
times.ts['1003'] cancel_time,
times.ts['1004'] finish_time,
times.ts['1005'] refund_time,
times.ts['1006'] refund_finish_time,
oi.expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount,
case
when times.ts['1003'] is not null then date_format(times.ts['1003'],'yyyy-MM-dd')
when times.ts['1004'] is not null and date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)<='2020-06-14' and times.ts['1005'] is null then date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)
when times.ts['1006'] is not null then date_format(times.ts['1006'],'yyyy-MM-dd')
when oi.expire_time is not null then date_format(oi.expire_time,'yyyy-MM-dd')
else '9999-99-99'
end
from
(
select
*
from ods_order_info
where dt='2020-06-14'
)oi
left join
(
select
order_id,
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') ts
from ods_order_status_log
where dt='2020-06-14'
group by order_id
)times
on oi.id=times.order_id;
2.每日装载
insert overwrite table dwd_order_info partition(dt)
select
nvl(new.id,old.id),
nvl(new.order_status,old.order_status),
nvl(new.user_id,old.user_id),
nvl(new.province_id,old.province_id),
nvl(new.payment_way,old.payment_way),
nvl(new.delivery_address,old.delivery_address),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.tracking_no,old.tracking_no),
nvl(new.create_time,old.create_time),
nvl(new.payment_time,old.payment_time),
nvl(new.cancel_time,old.cancel_time),
nvl(new.finish_time,old.finish_time),
nvl(new.refund_time,old.refund_time),
nvl(new.refund_finish_time,old.refund_finish_time),
nvl(new.expire_time,old.expire_time),
nvl(new.feight_fee,old.feight_fee),
nvl(new.feight_fee_reduce,old.feight_fee_reduce),
nvl(new.activity_reduce_amount,old.activity_reduce_amount),
nvl(new.coupon_reduce_amount,old.coupon_reduce_amount),
nvl(new.original_amount,old.original_amount),
nvl(new.final_amount,old.final_amount),
case
when new.cancel_time is not null then date_format(new.cancel_time,'yyyy-MM-dd')
when new.finish_time is not null and date_add(date_format(new.finish_time,'yyyy-MM-dd'),7)='2020-06-15' and new.refund_time is null then '2020-06-15'
when new.refund_finish_time is not null then date_format(new.refund_finish_time,'yyyy-MM-dd')
when new.expire_time is not null then date_format(new.expire_time,'yyyy-MM-dd')
else '9999-99-99'
end
from
(
select
id,
order_status,
user_id,
province_id,
payment_way,
delivery_address,
out_trade_no,
tracking_no,
create_time,
payment_time,
cancel_time,
finish_time,
refund_time,
refund_finish_time,
expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount
from dwd_order_info
where dt='9999-99-99'
)old
full outer join
(
select
oi.id,
oi.order_status,
oi.user_id,
oi.province_id,
oi.payment_way,
oi.delivery_address,
oi.out_trade_no,
oi.tracking_no,
oi.create_time,
times.ts['1002'] payment_time,
times.ts['1003'] cancel_time,
times.ts['1004'] finish_time,
times.ts['1005'] refund_time,
times.ts['1006'] refund_finish_time,
oi.expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount
from
(
select
*
from ods_order_info
where dt='2020-06-15'
)oi
left join
(
select
order_id,
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') ts
from ods_order_status_log
where dt='2020-06-15'
group by order_id
)times
on oi.id=times.order_id
)new
on old.id=new.id;
A、编写脚本
[fancy@node101 bin]$ vim ods_to_dwd_db_init.sh
在脚本中填写如下内容
#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
do_date=$2
else
echo "请传入日期参数"
exit
fi
dwd_order_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_info partition(dt)
select
oi.id,
oi.order_status,
oi.user_id,
oi.province_id,
oi.payment_way,
oi.delivery_address,
oi.out_trade_no,
oi.tracking_no,
oi.create_time,
times.ts['1002'] payment_time,
times.ts['1003'] cancel_time,
times.ts['1004'] finish_time,
times.ts['1005'] refund_time,
times.ts['1006'] refund_finish_time,
oi.expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount,
case
when times.ts['1003'] is not null then date_format(times.ts['1003'],'yyyy-MM-dd')
when times.ts['1004'] is not null and date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)<='$do_date' and times.ts['1005'] is null then date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)
when times.ts['1006'] is not null then date_format(times.ts['1006'],'yyyy-MM-dd')
when oi.expire_time is not null then date_format(oi.expire_time,'yyyy-MM-dd')
else '9999-99-99'
end
from
(
select
*
from ${APP}.ods_order_info
where dt='$do_date'
)oi
left join
(
select
order_id,
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') ts
from ${APP}.ods_order_status_log
where dt='$do_date'
group by order_id
)times
on oi.id=times.order_id;"
dwd_order_detail="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_detail partition(dt)
select
od.id,
od.order_id,
oi.user_id,
od.sku_id,
oi.province_id,
oda.activity_id,
oda.activity_rule_id,
odc.coupon_id,
od.create_time,
od.source_type,
od.source_id,
od.sku_num,
od.order_price*od.sku_num,
od.split_activity_amount,
od.split_coupon_amount,
od.split_final_amount,
date_format(create_time,'yyyy-MM-dd')
from
(
select
*
from ${APP}.ods_order_detail
where dt='$do_date'
)od
left join
(
select
id,
user_id,
province_id
from ${APP}.ods_order_info
where dt='$do_date'
)oi
on od.order_id=oi.id
left join
(
select
order_detail_id,
activity_id,
activity_rule_id
from ${APP}.ods_order_detail_activity
where dt='$do_date'
)oda
on od.id=oda.order_detail_id
left join
(
select
order_detail_id,
coupon_id
from ${APP}.ods_order_detail_coupon
where dt='$do_date'
)odc
on od.id=odc.order_detail_id;"
dwd_payment_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_payment_info partition(dt)
select
pi.id,
pi.order_id,
pi.user_id,
oi.province_id,
pi.trade_no,
pi.out_trade_no,
pi.payment_type,
pi.payment_amount,
pi.payment_status,
pi.create_time,
pi.callback_time,
nvl(date_format(pi.callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(
select * from ${APP}.ods_payment_info where dt='$do_date'
)pi
left join
(
select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on pi.order_id=oi.id;"
dwd_cart_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_cart_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
source_type,
source_id,
cart_price,
is_ordered,
create_time,
operate_time,
order_time,
sku_num
from ${APP}.ods_cart_info
where dt='$do_date';"
dwd_comment_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_comment_info partition(dt)
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
create_time,
date_format(create_time,'yyyy-MM-dd')
from ${APP}.ods_comment_info
where dt='$do_date';
"
dwd_favor_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_favor_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from ${APP}.ods_favor_info
where dt='$do_date';"
dwd_coupon_use="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_coupon_use partition(dt)
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time,
coalesce(date_format(used_time,'yyyy-MM-dd'),date_format(expire_time,'yyyy-MM-dd'),'9999-99-99')
from ${APP}.ods_coupon_use
where dt='$do_date';"
dwd_order_refund_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_refund_info partition(dt)
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time,
date_format(ri.create_time,'yyyy-MM-dd')
from
(
select * from ${APP}.ods_order_refund_info where dt='$do_date'
)ri
left join
(
select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on ri.order_id=oi.id;"
dwd_refund_payment="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_refund_payment partition(dt)
select
rp.id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time,
nvl(date_format(callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
out_trade_no,
order_id,
sku_id,
payment_type,
trade_no,
refund_amount,
refund_status,
create_time,
callback_time
from ${APP}.ods_refund_payment
where dt='$do_date'
)rp
left join
(
select
id,
user_id,
province_id
from ${APP}.ods_order_info
where dt='$do_date'
)oi
on rp.order_id=oi.id;"
case $1 in
dwd_order_info )
hive -e "$dwd_order_info"
;;
dwd_order_detail )
hive -e "$dwd_order_detail"
;;
dwd_payment_info )
hive -e "$dwd_payment_info"
;;
dwd_cart_info )
hive -e "$dwd_cart_info"
;;
dwd_comment_info )
hive -e "$dwd_comment_info"
;;
dwd_favor_info )
hive -e "$dwd_favor_info"
;;
dwd_coupon_use )
hive -e "$dwd_coupon_use"
;;
dwd_order_refund_info )
hive -e "$dwd_order_refund_info"
;;
dwd_refund_payment )
hive -e "$dwd_refund_payment"
;;
all )
hive -e "$dwd_order_info$dwd_order_detail$dwd_payment_info$dwd_cart_info$dwd_comment_info$dwd_favor_info$dwd_coupon_use$dwd_order_refund_info$dwd_refund_payment"
;;
esac
增加执行权限
[fancy@node101 bin]$ chmod +x ods_to_dwd_db_init.sh
B、脚本使用
执行脚本
[fancy@node101 bin]$ ods_to_dwd_db_init.sh all 2020-06-14
查看数据是否导入成功
A、编写脚本
[fancy@node101 bin]$ vim ods_to_dwd_db.sh
在脚本中填写如下内容
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
# 假设某累积型快照事实表,某天所有的业务记录全部完成,则会导致9999-99-99分区的数据未被覆盖,从而导致数据重复,该函数根据9999-99-99分区的数据的末次修改时间判断其是否被覆盖了,如果未被覆盖,就手动清理
clear_data(){
current_date=`date +%F`
current_date_timestamp=`date -d "$current_date" +%s`
last_modified_date=`hadoop fs -ls /warehouse/gmall/dwd/$1 | grep '9999-99-99' | awk '{print $6}'`
last_modified_date_timestamp=`date -d "$last_modified_date" +%s`
if [[ $last_modified_date_timestamp -lt $current_date_timestamp ]]; then
echo "clear table $1 partition(dt=9999-99-99)"
hadoop fs -rm -r -f /warehouse/gmall/dwd/$1/dt=9999-99-99/*
fi
}
dwd_order_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_order_info partition(dt)
select
nvl(new.id,old.id),
nvl(new.order_status,old.order_status),
nvl(new.user_id,old.user_id),
nvl(new.province_id,old.province_id),
nvl(new.payment_way,old.payment_way),
nvl(new.delivery_address,old.delivery_address),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.tracking_no,old.tracking_no),
nvl(new.create_time,old.create_time),
nvl(new.payment_time,old.payment_time),
nvl(new.cancel_time,old.cancel_time),
nvl(new.finish_time,old.finish_time),
nvl(new.refund_time,old.refund_time),
nvl(new.refund_finish_time,old.refund_finish_time),
nvl(new.expire_time,old.expire_time),
nvl(new.feight_fee,old.feight_fee),
nvl(new.feight_fee_reduce,old.feight_fee_reduce),
nvl(new.activity_reduce_amount,old.activity_reduce_amount),
nvl(new.coupon_reduce_amount,old.coupon_reduce_amount),
nvl(new.original_amount,old.original_amount),
nvl(new.final_amount,old.final_amount),
case
when new.cancel_time is not null then date_format(new.cancel_time,'yyyy-MM-dd')
when new.finish_time is not null and date_add(date_format(new.finish_time,'yyyy-MM-dd'),7)='$do_date' and new.refund_time is null then '$do_date'
when new.refund_finish_time is not null then date_format(new.refund_finish_time,'yyyy-MM-dd')
when new.expire_time is not null then date_format(new.expire_time,'yyyy-MM-dd')
else '9999-99-99'
end
from
(
select
id,
order_status,
user_id,
province_id,
payment_way,
delivery_address,
out_trade_no,
tracking_no,
create_time,
payment_time,
cancel_time,
finish_time,
refund_time,
refund_finish_time,
expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount
from ${APP}.dwd_order_info
where dt='9999-99-99'
)old
full outer join
(
select
oi.id,
oi.order_status,
oi.user_id,
oi.province_id,
oi.payment_way,
oi.delivery_address,
oi.out_trade_no,
oi.tracking_no,
oi.create_time,
times.ts['1002'] payment_time,
times.ts['1003'] cancel_time,
times.ts['1004'] finish_time,
times.ts['1005'] refund_time,
times.ts['1006'] refund_finish_time,
oi.expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount
from
(
select
*
from ${APP}.ods_order_info
where dt='$do_date'
)oi
left join
(
select
order_id,
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') ts
from ${APP}.ods_order_status_log
where dt='$do_date'
group by order_id
)times
on oi.id=times.order_id
)new
on old.id=new.id;"
dwd_order_detail="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_detail partition(dt='$do_date')
select
od.id,
od.order_id,
oi.user_id,
od.sku_id,
oi.province_id,
oda.activity_id,
oda.activity_rule_id,
odc.coupon_id,
od.create_time,
od.source_type,
od.source_id,
od.sku_num,
od.order_price*od.sku_num,
od.split_activity_amount,
od.split_coupon_amount,
od.split_final_amount
from
(
select
*
from ${APP}.ods_order_detail
where dt='$do_date'
)od
left join
(
select
id,
user_id,
province_id
from ${APP}.ods_order_info
where dt='$do_date'
)oi
on od.order_id=oi.id
left join
(
select
order_detail_id,
activity_id,
activity_rule_id
from ${APP}.ods_order_detail_activity
where dt='$do_date'
)oda
on od.id=oda.order_detail_id
left join
(
select
order_detail_id,
coupon_id
from ${APP}.ods_order_detail_coupon
where dt='$do_date'
)odc
on od.id=odc.order_detail_id;"
dwd_payment_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_payment_info partition(dt)
select
nvl(new.id,old.id),
nvl(new.order_id,old.order_id),
nvl(new.user_id,old.user_id),
nvl(new.province_id,old.province_id),
nvl(new.trade_no,old.trade_no),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.payment_type,old.payment_type),
nvl(new.payment_amount,old.payment_amount),
nvl(new.payment_status,old.payment_status),
nvl(new.create_time,old.create_time),
nvl(new.callback_time,old.callback_time),
nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select id,
order_id,
user_id,
province_id,
trade_no,
out_trade_no,
payment_type,
payment_amount,
payment_status,
create_time,
callback_time
from ${APP}.dwd_payment_info
where dt = '9999-99-99'
)old
full outer join
(
select
pi.id,
pi.out_trade_no,
pi.order_id,
pi.user_id,
oi.province_id,
pi.payment_type,
pi.trade_no,
pi.payment_amount,
pi.payment_status,
pi.create_time,
pi.callback_time
from
(
select * from ${APP}.ods_payment_info where dt='$do_date'
)pi
left join
(
select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on pi.order_id=oi.id
)new
on old.id=new.id;"
dwd_cart_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_cart_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
source_type,
source_id,
cart_price,
is_ordered,
create_time,
operate_time,
order_time,
sku_num
from ${APP}.ods_cart_info
where dt='$do_date';"
dwd_comment_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_comment_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
create_time
from ${APP}.ods_comment_info where dt='$do_date';"
dwd_favor_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_favor_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from ${APP}.ods_favor_info
where dt='$do_date';"
dwd_coupon_use="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_coupon_use partition(dt)
select
nvl(new.id,old.id),
nvl(new.coupon_id,old.coupon_id),
nvl(new.user_id,old.user_id),
nvl(new.order_id,old.order_id),
nvl(new.coupon_status,old.coupon_status),
nvl(new.get_time,old.get_time),
nvl(new.using_time,old.using_time),
nvl(new.used_time,old.used_time),
nvl(new.expire_time,old.expire_time),
coalesce(date_format(nvl(new.used_time,old.used_time),'yyyy-MM-dd'),date_format(nvl(new.expire_time,old.expire_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time
from ${APP}.dwd_coupon_use
where dt='9999-99-99'
)old
full outer join
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time
from ${APP}.ods_coupon_use
where dt='$do_date'
)new
on old.id=new.id;"
dwd_order_refund_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_refund_info partition(dt='$do_date')
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time
from
(
select * from ${APP}.ods_order_refund_info where dt='$do_date'
)ri
left join
(
select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on ri.order_id=oi.id;"
dwd_refund_payment="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_refund_payment partition(dt)
select
nvl(new.id,old.id),
nvl(new.user_id,old.user_id),
nvl(new.order_id,old.order_id),
nvl(new.sku_id,old.sku_id),
nvl(new.province_id,old.province_id),
nvl(new.trade_no,old.trade_no),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.payment_type,old.payment_type),
nvl(new.refund_amount,old.refund_amount),
nvl(new.refund_status,old.refund_status),
nvl(new.create_time,old.create_time),
nvl(new.callback_time,old.callback_time),
nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time
from ${APP}.dwd_refund_payment
where dt='9999-99-99'
)old
full outer join
(
select
rp.id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time
from
(
select
id,
out_trade_no,
order_id,
sku_id,
payment_type,
trade_no,
refund_amount,
refund_status,
create_time,
callback_time
from ${APP}.ods_refund_payment
where dt='$do_date'
)rp
left join
(
select
id,
user_id,
province_id
from ${APP}.ods_order_info
where dt='$do_date'
)oi
on rp.order_id=oi.id
)new
on old.id=new.id;"
case $1 in
dwd_order_info )
hive -e "$dwd_order_info"
clear_data dwd_order_info
;;
dwd_order_detail )
hive -e "$dwd_order_detail"
;;
dwd_payment_info )
hive -e "$dwd_payment_info"
clear_data dwd_payment_info
;;
dwd_cart_info )
hive -e "$dwd_cart_info"
;;
dwd_comment_info )
hive -e "$dwd_comment_info"
;;
dwd_favor_info )
hive -e "$dwd_favor_info"
;;
dwd_coupon_use )
hive -e "$dwd_coupon_use"
clear_data dwd_coupon_use
;;
dwd_order_refund_info )
hive -e "$dwd_order_refund_info"
;;
dwd_refund_payment )
hive -e "$dwd_refund_payment"
clear_data dwd_refund_payment
;;
all )
hive -e "$dwd_order_info$dwd_order_detail$dwd_payment_info$dwd_cart_info$dwd_comment_info$dwd_favor_info$dwd_coupon_use$dwd_order_refund_info$dwd_refund_payment"
clear_data dwd_order_info
clear_data dwd_payment_info
clear_data dwd_coupon_use
clear_data dwd_refund_payment
;;
esac
增加脚本执行权限
[fancy@node101 bin]$ chmod 777 ods_to_dwd_db.sh
B、脚本使用
执行脚本
[fancy@node101 bin]$ ods_to_dwd_db.sh all 2020-06-14
查看数据是否导入成功