一、背景
二、coredump介绍
2.1 什么是coredump
2.2 coredump作用
2.3 什么情况下触发coredump
三、如何使用coredump
3.1 方案1:设置core size和coredump文件路径方式使能coredump
3.1.1 使能步骤
3.1.2 方案缺陷
3.2 方案2:命名管道方式使能coredump
3.2.1 使能步骤
3.2.2 基本工作流程
3.2.3 内核设置用户空间辅助程序并执行
3.2.4 用户空间coredump辅助程序Demo
四、coredump实现原理
4.1 基本原理
4.2 核心代码段
4.3 代码时序
4.4 core文件格式及内容
五、Demo案例
六、风险及解决方案
系统发生native crash时,针对内存异常访问、内存踩踏等疑难问题,由于tombstone信息量不足无法精确定位分析这类问题。
当用户程序运行过程中发生异常, 程序异常退出时, 由Linux内核把程序当前的内存状态信息(运行时的内存,寄存器状态,堆栈指针,各种函数调用堆栈信息等)存储在一个core文件中, 这个过程称作coredump.
coredump主要应用于解决NE问题(native exception)。用户进程发生native crash时,tombstone会抓取一些简单的backtrace信息,但是对于定位一些内存访问异常、内存被踩的疑难问题来说,tombstone信息量不充足导致无法精确定位分析问题,这个时候就需要使用到coredump分析这类问题。
从进程发生异常类型维度来看,当native进程发生内存越界访问、堆栈溢出、非法指针等操作时,会触发coredump
从进程接收的信号类型来看,当native进程接收SIGQUIT、SIGABRT、SIGSEGV、SIGTRAP等信号时,会触发coredump
在Android平台中默认关闭coredump功能,需要手动或代码中去打开。当检测到进程异常退出时,会在指定的路径下生成core文件(格式为elf),可以结合gdb工具调试分析,详见第五章Demo案例。
使能coredump有两种方案,第一种是设置core size和coredump文件路径,另外一种是采用命名管道方式使能coredump.
1)设置core size
可以用命令方式全局设置core size,如下:
1) 检查系统 coredump 是否开启
ulimit -c // 返回 0,则未启用
2) 打开coredump
ulimit -c 1024 // 设置成 1024 byte
或者
ulimit -c unlimited // 设置成无限大
也为单个进程设置core size,在代码端实现,如下:
void coreSetLimit(pid_t pid, uint64_t size)
struct rlimit64 rlim64;
rlim64.rlim_cur = size;
rlim64.rlim_max = size;
int ret = prlimit64(pid, RLIMIT_CORE, &rlim64, NULL);
}
2.设置coredump生成文件的路径
// 如果不设置文件路径,core文件生成的位置默认是可执行文件所在的位置
echo "/data/corefile/core-%e-%p-%t" > /proc/sys/kernel/core_pattern
1)如果为每个进程设置core size,需要配置setrlimit selinux权限,由于系统中的进程数量很多,为每个进程配置selinux权限不太现实,且有些进程对setrlimit selinux权限是neverallow.
2)即使进程设置core size成功,该进程需要对coredump文件路径(/data/xxx)配置相关的selinux权限和读写权限,每个进程都去配置这些权限不太现实,也容易遗漏,且有些进程对这部分的权限是neverallow.
方案2可以绕过selinux权限,解决以上问题。
1)在内核配置CONFIG_STATIC_USERMODEHELPER_PATH属性
2)用户空间实现core辅助程序core_bin
3)用户空间配置
mkdir /data/xxx/coredump 0777 root root
chmod 0777 data/xxx/coredump 0777
restorecon data/xxx/coredump 0777
write /proc/sys/kernel/core_pattern "|/system/bin/core_bin %e %p"
1)进程发生crash时,内核发送异常信号,在linux coredump中处理异常信号,创建管道,通过exec方式启动用户空间的辅助程序core_bin
2)收集coredump信息写入管道,用户空间的辅助程序core_bin从管道中读取数据,写入到指定的文件
do_coredump
do_coredump函数主要作用:如果用户空间采用的是管道方式,则设置管道并启动用户模式辅助进程,进行coredump数据转储。
// kernel/fs/coredump.c
void do_coredump(const kernel_siginfo_t *siginfo)
{
struct core_state core_state;
struct core_name cn;
struct mm_struct *mm = current->mm;
struct linux_binfmt * binfmt;
const struct cred *old_cred;
struct cred *cred;
int retval = 0;
int ispipe;
size_t *argv = NULL;
int argc = 0;
/* require nonrelative corefile path and be extra careful */
bool need_suid_safe = false;
bool core_dumped = false;
static atomic_t core_dump_count = ATOMIC_INIT(0);
struct coredump_params cprm = {
.siginfo = siginfo,
.regs = signal_pt_regs(),
.limit = rlimit(RLIMIT_CORE),
/*
* We must use the same mm->flags while dumping core to avoid
* inconsistency of bit flags, since this flag is not protected
* by any locks.
*/
.mm_flags = mm->flags,
.vma_meta = NULL,
};
audit_core_dumps(siginfo->si_signo);
binfmt = mm->binfmt;
if (!binfmt || !binfmt->core_dump)
goto fail;
if (!__get_dumpable(cprm.mm_flags))
goto fail;
cred = prepare_creds();
if (!cred)
goto fail;
/*
* We cannot trust fsuid as being the "true" uid of the process
* nor do we know its entire history. We only know it was tainted
* so we dump it as root in mode 2, and only into a controlled
* environment (pipe handler or fully qualified path).
*/
if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
/* Setuid core dump mode */
cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
need_suid_safe = true;
}
retval = coredump_wait(siginfo->si_signo, &core_state);
if (retval < 0)
goto fail_creds;
old_cred = override_creds(cred);
// 1. 判断是否采用管道转储
ispipe = format_corename(&cn, &cprm, &argv, &argc);
/* 2. 如果是管道转储,则设置管道并调用用户模式辅助进程;
如果是文件转储,则打开文件并进行写入 */
if (ispipe) {
int argi;
int dump_count;
char **helper_argv;
struct subprocess_info *sub_info;
if (ispipe < 0) {
printk(KERN_WARNING "format_corename failed\n");
printk(KERN_WARNING "Aborting core\n");
goto fail_unlock;
}
if (cprm.limit == 1) {
printk(KERN_WARNING
"Process %d(%s) has RLIMIT_CORE set to 1\n",
task_tgid_vnr(current), current->comm);
printk(KERN_WARNING "Aborting core\n");
goto fail_unlock;
}
cprm.limit = RLIM_INFINITY;
dump_count = atomic_inc_return(&core_dump_count);
if (core_pipe_limit && (core_pipe_limit < dump_count)) {
printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
task_tgid_vnr(current), current->comm);
printk(KERN_WARNING "Skipping core dump\n");
goto fail_dropcount;
}
helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
GFP_KERNEL);
if (!helper_argv) {
printk(KERN_WARNING "%s failed to allocate memory\n",
__func__);
goto fail_dropcount;
}
for (argi = 0; argi < argc; argi++)
helper_argv[argi] = cn.corename + argv[argi];
helper_argv[argi] = NULL;
retval = -ENOMEM;
// 2.1 设置用户模式辅助程序
sub_info = call_usermodehelper_setup(helper_argv[0],
helper_argv, NULL, GFP_KERNEL,
umh_pipe_setup, NULL, &cprm);
// 2.2 内核执行用户辅助程序
if (sub_info)
retval = call_usermodehelper_exec(sub_info,
UMH_WAIT_EXEC);
kfree(helper_argv);
if (retval) {
printk(KERN_INFO "Core dump to |%s pipe failed\n",
cn.corename);
goto close_fail;
}
} else {
// 文件转储
....
}
...
// 3. 查是否中断,如果没有中断,则写入核心转储数据
if (!dump_interrupted()) {
/*
* umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
* have this set to NULL.
*/
if (!cprm.file) {
pr_info("Core dump to |%s disabled\n", cn.corename);
goto close_fail;
}
if (!dump_vma_snapshot(&cprm))
goto close_fail;
file_start_write(cprm.file);
core_dumped = binfmt->core_dump(&cprm);
/*
* Ensures that file size is big enough to contain the current
* file postion. This prevents gdb from complaining about
* a truncated file if the last "write" to the file was
* dump_skip.
*/
if (cprm.to_skip) {
cprm.to_skip--;
dump_emit(&cprm, "", 1);
}
file_end_write(cprm.file);
free_vma_snapshot(&cprm);
}
// 4. 进行清理工作,包括关闭文件、减少核心转储计数、释放内存、结束核心转储等
if (ispipe && core_pipe_limit)
wait_for_dump_helpers(cprm.file);
close_fail:
if (cprm.file)
filp_close(cprm.file, NULL);
fail_dropcount:
if (ispipe)
atomic_dec(&core_dump_count);
fail_unlock:
kfree(argv);
kfree(cn.corename);
coredump_finish(core_dumped);
revert_creds(old_cred);
fail_creds:
put_cred(cred);
fail:
return;
}
static void wait_for_dump_helpers(struct file *file)
{
// 1. 获取管道的信息
struct pipe_inode_info *pipe = file->private_data;
// 2.锁定管道,以防止其他进程同时修改管道的状态
pipe_lock(pipe);
// 3. 增加管道的读者计数,并减少写者计数。这表明有一个新的读者(核心转储辅助进程)正在等待数据
pipe->readers++;
pipe->writers--;
// 4. 唤醒所有在管道读等待队列上等待的进程
wake_up_interruptible_sync(&pipe->rd_wait);
// 5. 向所有注册了异步通知的读者发送 SIGIO 信号,通知它们有数据可读
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
// 6. 解锁管道,允许其他进程访问管道
pipe_unlock(pipe);
/*
* We actually want wait_event_freezable() but then we need
* to clear TIF_SIGPENDING and improve dump_interrupted().
*/
// 7. 当前进程进入可中断的等待状态,直到管道的读者计数等于1。这表明核心转储数据已经被读取完毕。
wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
// 8. 再次锁定管道,以进行后续的状态更新
pipe_lock(pipe);
// 9. 减少管道的读者计数,并增加写者计数。这表明读者已经完成了数据读取。
pipe->readers--;
pipe->writers++;
// 10. 解锁管道,允许其他进程访问管道
pipe_unlock(pipe);
}
// 设置管道
static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
{
struct file *files[2];
struct coredump_params *cp = (struct coredump_params *)info->data;
// 1. 创建一个管道,并将管道的两个文件描述符存储在 files数组中
int err = create_pipe_files(files, 0);
if (err)
return err;
// 2. 管道的写端(files[1])设置为 cp->file,以便后续的核心转储数据可以通过这个文件描述符写入
cp->file = files[1];
// 3. 将当前进程的标准输入(fd 0)替换为管道的读端(files[0])。
// replace_fd 函数用于替换文件描述符,fput 函数用于减少文件引用计数
err = replace_fd(0, files[0], 0);
fput(files[0]);
/* and disallow core files too */
// 4. 设置当前进程的核心文件大小限制为1,用于防止递归核心转储
current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
return err;
}
format_corename
format_corename函数作用:根据给定的模式字符串生成核心转储文件的名称,并处理管道模式,代码如下:
static int format_corename(struct core_name *cn, struct coredump_params *cprm,
size_t **argv, int *argc)
{
const struct cred *cred = current_cred();
const char *pat_ptr = core_pattern;
int ispipe = (*pat_ptr == '|');
bool was_space = false;
int pid_in_pattern = 0;
int err = 0;
cn->used = 0;
cn->corename = NULL;
if (expand_corename(cn, core_name_size))
return -ENOMEM;
cn->corename[0] = '\0';
// 1. 如果模式以管道符号开头,则分配内存用于存储命令行参数,并初始化参数数组
if (ispipe) {
int argvs = sizeof(core_pattern) / 2;
(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
if (!(*argv))
return -ENOMEM;
(*argv)[(*argc)++] = 0;
++pat_ptr;
if (!(*pat_ptr))
return -ENOMEM;
}
/* Repeat as long as we have more pattern to process and more output
space */
while (*pat_ptr) {
/*
* Split on spaces before doing template expansion so that
* %e and %E don't get split if they have spaces in them
*/
if (ispipe) {
if (isspace(*pat_ptr)) {
if (cn->used != 0)
was_space = true;
pat_ptr++;
continue;
} else if (was_space) {
was_space = false;
err = cn_printf(cn, "%c", '\0');
if (err)
return err;
(*argv)[(*argc)++] = cn->used;
}
}
// 遍历模式字符串,根据不同的模式字符(如 %p、%u、%s 等)生成相应的文件名
if (*pat_ptr != '%') {
err = cn_printf(cn, "%c", *pat_ptr++);
} else {
switch (*++pat_ptr) {
/* single % at the end, drop that */
case 0:
goto out;
/* Double percent, output one percent */
case '%':
err = cn_printf(cn, "%c", '%');
break;
/* pid */
case 'p':
pid_in_pattern = 1;
err = cn_printf(cn, "%d",
task_tgid_vnr(current));
break;
/* global pid */
case 'P':
err = cn_printf(cn, "%d",
task_tgid_nr(current));
break;
...
default:
break;
}
++pat_ptr;
}
if (err)
return err;
}
...
}
call_usermodehelper_setup
call_usermodehelper_setup函数作用:内核设置一个用户空间辅助进程的执行环境
// kernel/kernel/umh.c
struct subprocess_info *call_usermodehelper_setup(const char *path, char **argv,
char **envp, gfp_t gfp_mask,
int (*init)(struct subprocess_info *info, struct cred *new),
void (*cleanup)(struct subprocess_info *info),
void *data)
{
// 1. 分配内存用于存储 subprocess_info 结构体
struct subprocess_info *sub_info;
sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
if (!sub_info)
goto out;
// 2. 初始化工作队列,用于执行用户空间的辅助进程
INIT_WORK(&sub_info->work, call_usermodehelper_exec_work);
// 3. 设置路径、参数、环境变量以及初始化和清理函数
#ifdef CONFIG_STATIC_USERMODEHELPER
sub_info->path = CONFIG_STATIC_USERMODEHELPER_PATH;
#else
sub_info->path = path;
#endif
sub_info->argv = argv;
sub_info->envp = envp;
sub_info->cleanup = cleanup;
sub_info->init = init;
sub_info->data = data;
out:
return sub_info;
}
call_usermodehelper_exec
call_usermodehelper_exec函数作用:在内核空间中启动一个用户空间的进程,通常用于执行一些特定的任务,如core文件转储
int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
{
// 1. 初始化了一些变量,并检查 sub_info->path 是否为空
unsigned int state = TASK_UNINTERRUPTIBLE;
DECLARE_COMPLETION_ONSTACK(done);
int retval = 0;
if (!sub_info->path) {
call_usermodehelper_freeinfo(sub_info);
return -EINVAL;
}
// 2. 对用户模式辅助进程进行加锁,并检查是否禁用了用户模式辅助进程
helper_lock();
if (usermodehelper_disabled) {
retval = -EBUSY;
goto out;
}
/*
* If there is no binary for us to call, then just return and get out of
* here. This allows us to set STATIC_USERMODEHELPER_PATH to "" and
* disable all call_usermodehelper() calls.
*/
if (strlen(sub_info->path) == 0)
goto out;
/*
* Set the completion pointer only if there is a waiter.
* This makes it possible to use umh_complete to free
* the data structure in case of UMH_NO_WAIT.
*/
sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
sub_info->wait = wait;
// 3. 将work排队到系统未绑定工作队列中
queue_work(system_unbound_wq, &sub_info->work);
if (wait == UMH_NO_WAIT) /* task has freed sub_info */
goto unlock;
if (wait & UMH_FREEZABLE)
state |= TASK_FREEZABLE;
if (wait & UMH_KILLABLE) {
retval = wait_for_completion_state(&done, state | TASK_KILLABLE);
if (!retval)
goto wait_done;
/* umh_complete() will see NULL and free sub_info */
if (xchg(&sub_info->complete, NULL))
goto unlock;
/*
* fallthrough; in case of -ERESTARTSYS now do uninterruptible
* wait_for_completion_state(). Since umh_complete() shall call
* complete() in a moment if xchg() above returned NULL, this
* uninterruptible wait_for_completion_state() will not block
* SIGKILL'ed processes for long.
*/
}
wait_for_completion_state(&done, state);
wait_done:
retval = sub_info->retval;
out:
call_usermodehelper_freeinfo(sub_info);
unlock:
helper_unlock();
return retval;
}
int main(int argc, char *argv[])
{
int result = snprintf(name, sizeof(name),
"/data/xxx/coredump/core-%s-%s", argv[1], argv[2]);
...
fd = open(name, O_RDWR, 0777);
while (numread = read(STDIN_FILENO, buf, BUF_SIZE))
{
if ((numread == -1) && (errno != EINTR)) {
break;
} else if (numread > 0) {
ptr = buf;
while (numwrite = write(fd, ptr, numread)) {
if ((numwrite == -1) && (errno != EINTR)) break;
else if (numwrite == numread) break;
else if (numwrite > 0) {
ptr += numwrite;
numread -= numwrite;
}
}
if (numwrite == -1) {
break;
}
}
}
close(fd);
return 0;
}
用户程序发生某些错误或异常时,在Linux内核会捕获到异常,并给用户进程发送signal异常信号,进程在返回用户空间之前处理信号,调用Linux内核coredump,生成elf格式的core文件,保存到指定的路径。
调用 do_coredump 函数来生成 core文件。如下:
void do_coredump(const kernel_siginfo_t *siginfo)
{
......
binfmt = mm->binfmt;
if (!binfmt || !binfmt->core_dump)
goto fail;
if (!__get_dumpable(cprm.mm_flags))
goto fail;
......
// 1.生成core文件名称
ispipe = format_corename(&cn, &cprm, &argv, &argc);
......
// 2.创建core文件
cprm.file = file_open_root(&root, cn.corename, open_flags, 0600);
......
// 3.将进程的内存信息写入core文件
core_dumped = binfmt->core_dump(&cprm);
......
}
elf_core_dump 函数负责将进程的内存状态信息写入elf格式的core文件,以便后续的gdb调试和分析。如下:
// kernel_platform/msm-kernel/fs/binfmt_elf.c
static int elf_core_dump(struct coredump_params *cprm)
{
......
/*
* Collect all the non-memory information about the process for the
* notes. This also sets up the file header.
*/
// 1.函数填充 ELF 头部和 notes 信息
if (!fill_note_info(&elf, e_phnum, &info, cprm))
goto end_coredump;
has_dumped = 1;
// 2.计算 ELF 头部、程序头部和 notes 节的大小,并分配相应的内存
offset += sizeof(elf); /* Elf header */
offset += segs * sizeof(struct elf_phdr); /* Program headers */
......
/* Write program headers for segments dump */
for (i = 0; i < cprm->vma_count; i++) {
struct core_vma_metadata *meta = cprm->vma_meta + i;
struct elf_phdr phdr;
phdr.p_type = PT_LOAD;
phdr.p_offset = offset;
phdr.p_vaddr = meta->start;
phdr.p_paddr = 0;
phdr.p_filesz = meta->dump_size;
phdr.p_memsz = meta->end - meta->start;
offset += phdr.p_filesz;
phdr.p_flags = 0;
if (meta->flags & VM_READ)
phdr.p_flags |= PF_R;
if (meta->flags & VM_WRITE)
phdr.p_flags |= PF_W;
if (meta->flags & VM_EXEC)
phdr.p_flags |= PF_X;
phdr.p_align = ELF_EXEC_PAGESIZE;
if (!dump_emit(cprm, &phdr, sizeof(phdr)))
goto end_coredump;
}
// 3.写入 ELF 头部和程序头部
if (!elf_core_write_extra_phdrs(cprm, offset))
goto end_coredump;
/* write out the notes section */
// 4.写入 notes信息
if (!write_note_info(&info, cprm))
goto end_coredump;
/* For cell spufs */
// 5.写入数据段
if (elf_coredump_extra_notes_write(cprm))
goto end_coredump;
/* Align to page */
dump_skip_to(cprm, dataoff);
for (i = 0; i < cprm->vma_count; i++) {
struct core_vma_metadata *meta = cprm->vma_meta + i;
if (!dump_user_range(cprm, meta->start, meta->dump_size))
goto end_coredump;
}
// 6.写入扩展编号
if (!elf_core_write_extra_data(cprm))
goto end_coredump;
if (e_phnum == PN_XNUM) {
if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
goto end_coredump;
}
end_coredump:
free_note_info(&info);
kfree(shdr4extnum);
kfree(phdr4note);
return has_dumped;
}
异常捕获、信号处理&生成core文件的功能逻辑的代码时序,如下:
coredump抓取的core文件为elf格式,可以使用gdb调试,定位分析问题。
core文件内容,如下:
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: CORE (Core file)
Machine: AArch64
Version: 0x1
Entry point address: 0x0
Start of program headers: 64 (bytes into file)
Start of section headers: 0 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 138
Size of section headers: 0 (bytes)
Number of section headers: 0
Section header string table index: 0
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
NOTE 0x0000000000001e70 0x0000000000000000 0x0000000000000000
0x00000000000018a8 0x0000000000000000 0x0
LOAD 0x0000000000004000 0x000000560ca89000 0x0000000000000000
0x0000000000000000 0x0000000000002000 R 0x1000
LOAD 0x0000000000004000 0x000000560ca8b000 0x0000000000000000
0x0000000000000000 0x0000000000003000 R E 0x1000
LOAD 0x0000000000004000 0x000000560ca8e000 0x0000000000000000
0x0000000000001000 0x0000000000001000 R 0x1000
...
Displaying notes found at file offset 0x00001e70 with length 0x000018a8:
Owner Data size Description
CORE 0x00000188 NT_PRSTATUS (prstatus structure)
CORE 0x00000088 NT_PRPSINFO (prpsinfo structure)
CORE 0x00000080 NT_SIGINFO (siginfo_t data)
CORE 0x00000150 NT_AUXV (auxiliary vector)
CORE 0x00000f6e NT_FILE (mapped files)
Page size: 4096
Start End Page Offset
0x000000560ca89000 0x000000560ca8b000 0x0000000000000000
/system/bin/coredump-test-bin
0x000000560ca8b000 0x000000560ca8e000 0x0000000000000002
/system/bin/coredump-test-bin
...
CORE 0x00000210 NT_FPREGSET (floating point registers)
LINUX 0x00000010 NT_ARM_TLS (AArch TLS registers)
description data: 00 10 e4 45 7e 00 00 00 00 00 00 00 00 00 00 00
LINUX 0x00000108 NT_ARM_HW_BREAK (AArch hardware breakpoint registers)
description data: 06 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LINUX 0x00000108 NT_ARM_HW_WATCH (AArch hardware watchpoint registers)
description data: 04 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LINUX 0x00000004 Unknown note type: (0x00000404)
description data: ff ff ff ff
LINUX 0x00000010 Unknown note type: (0x00000406)
description data: 00 00 00 00 80 ff 7f 00 00 00 00 00 80 ff 7f 00
LINUX 0x00000008 Unknown note type: (0x0000040a)
description data: 0f 00 00 00 00 00 00 00
LINUX 0x00000008 Unknown note type: (0x00000409)
description data: 01 00 00 00 00 00 00 00
core文件内容主要包括ELF Header、Program Headers、NOTE segment.
ELF Header:用于记录core文件的基本信息和结构。
Program Headers: 记录内存中映射文件的信息,以及segment的权限和属性。
NOTE segment:记录进程崩溃时刻的进程状态、寄存器、信号信息、辅助向量和映射文件的详细信息。通过这些信息,gdb调试工具可以重建崩溃时的内存布局,分析崩溃原因,并帮助开发者精确定位分析问题。
1)Demo程序
进程发生异常crash后,抓取tombstone和core文件。
2)生成的tombstone文件
从抓取的tombstone文件分析,只能看出大致的原因,无法精确定位到根本原因或哪句代码出错导致进程crash.因此,需要借助coredump,抓取core文件来精确定位分析这类问题。
Cmdline: ../../system/bin/coredump-test-bin use-after-free
pid: 11966, tid: 11966, name: coredump-test-b >>> ../../system/bin/coredump-test-bin <<<
uid: 0
...
backtrace:
#01 pc 0000000000090088 /system/lib64/libc.so (__vfprintf+10416) (BuildId: 567e41669f1cb528e72fe319cd09033b)
#02 pc 00000000000ac06c /system/lib64/libc.so (vsnprintf+192) (BuildId: 567e41669f1cb528e72fe319cd09033b)
#03 pc 0000000000006afc /system/lib64/liblog.so (__android_log_print+184) (BuildId: 87ba6a9314f00fab650fb8fad7913d58)
#04 pc 00000000000010a4 /system/bin/coredump-test-bin (main+80) (BuildId: c97bade065c198c12dcca74f107c513c)
#05 pc 0000000000048768 /system/lib64/libc.so (__libc_init+96) (BuildId: 567e41669f1cb
...
3)生成的core文件
打开coredump功能,抓取core文件。core文件为elf格式,可以用gdb调试。
用gdb调试Demo程序和生成的core文件,执行gdb ./coredump-test-bin ./core-coredump-test-bin-11966-1720526041命令,可以精确定位到是源文件哪一行代码出错,如下:
--->
...
Program terminated with signal SIGSEGV, Segmentation fault.
#0 0x000000000040053c in square (a=1, b=2) at test.c:7
7 *p = 666; # 可见在test.c中的第7行,出现了问题。
# (gdb) backtrace // 输入backtrace
--->
#0 0x000000000040053c in square (a=1, b=2) at test.c:7 // 可见在test.c中的第7行,出现了问题。
#1 0x0000000000400564 in doCalc (num1=1, num2=2) at test.c:14
#2 0x0000000000400591 in main () at test.c:22
打开coredump功能,存在以下风险:
1)若系统中存在native进程反复crash自启,尤其在研发阶段这种现象很普遍,会导致持续不断产生core文件,磁盘空间很快被占满。
解决方案:结合quota机制,core文件路径存储空间分配project_id,设置quota阈值(存储空间上限),超过阈值就自动覆盖老的文件