您的当前位置:首页正文

【Algorithm&DataStructure】二叉查找树(BST)的遍历

2025-01-09 来源:个人技术集锦

先序遍历


    /**
	 * 先序遍历:递归实现
	 * @param root
	 */
	public void preOrderRe(TreeNode root){
		System.out.print(root.val);
		if(root.left != null) {
			preOrderRe(root.left);
		}
		if(root.right != null) {
			preOrderRe(root.right);
		}
	}
	
	/**
	 * 先序遍历非递归实现:堆栈
	 * @param root
	 * @return
	 */
	public void preOrder(TreeNode root) {
		Stack<TreeNode> stack = new Stack<TreeNode>();
		while(root != null || !stack.isEmpty()) {
			
			while(root != null) {
				System.out.print(root.val);
				stack.push(root);
				root = root.left;
			}
			if(!stack.isEmpty()) {
				root = stack.pop();
				root = root.right;
			}
		}
	}

 

 

中序遍历


    /**
	 * 中序遍历递归实现
	 * @param root
	 */
	public void midOrderRe(TreeNode root){
		
			if(root.left != null)midOrderRe(root.left);
			System.out.print(root.val);
			if(root.right != null)midOrderRe(root.right);
	}
	
	/**
	 * 中序遍历非递归实现
	 * @param root
	 */
	public void midOrder(TreeNode root){
		Stack<TreeNode> stack = new Stack<TreeNode>();
		while(root != null || !stack.isEmpty()) {
			while(root != null) {
				stack.push(root);
				root = root.left;
			}
			if(!stack.isEmpty()) {
				root = stack.pop();
				System.out.print(root.val);
				root = root.right;
			}
		}
		
	}

 

 

后序遍历


    /**
	 * 后序遍历递归实现
	 * @param root
	 */
	public void postOrderRe(TreeNode root){
		
			if(root.left != null)postOrderRe(root.left);
			if(root.right != null)postOrderRe(root.right);
			System.out.print(root.val);
	}

	/**
	 * 后序遍历非递归实现
	 * @param root
	 */
	public void postOrder1(TreeNode root) {
		Stack<TreeNode> stack = new Stack<TreeNode>();
		Stack<Integer> output = new Stack<Integer>();	//倒着存排序结果
	
		while(root != null || !stack.isEmpty()) {
			while(root != null) {
				output.push(root.val);
				stack.push(root);
				root = root.right;
			}
			if(!stack.isEmpty()) {
				root = stack.pop();
				root = root.left;
			}
		}
		while(!output.isEmpty()) {
			
			System.out.print(output.pop());
		}
		
	}

 

层次遍历


    //使用数组下标表示深度(深度遍历+层次输出) 
    ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
    
    ArrayList<ArrayList<Integer> > Print(TreeNode pRoot) {
        support(pRoot,0);
        return result;
    }
    
    public void support(TreeNode pRoot, int depth){
        if(pRoot == null)return ;
        if(depth >= result.size()){
             result.add(new ArrayList<Integer>());
        }
        result.get(depth).add(pRoot.val);
        support(pRoot.left,depth+1);
        support(pRoot.right,depth+1);
    }
	/**
	 * 层次遍历使用队列
	 * @param root
	 */
	public void levelOrder(TreeNode root) {
		if(root == null)return;
		Queue<TreeNode> q = new LinkedList<TreeNode>();
		q.add(root);
		while(!q.isEmpty()) {
			int count = q.size();
			while(count > 0) {
				TreeNode temp = q.poll();
				System.out.print(temp.val);
				if(temp.left != null)q.add(temp.left);
				if(temp.right != null)q.add(temp.right);
				count--;
			}
		}
	}

 

显示全文