数据集:
0 0
0 1
4 4
4 5
5 4
5 5
1 0
# 用最大最小距离法进行聚类分析
from fileUtil import FileUtil
from mathUtil import MathUtil
import math
X = FileUtil.openFile('2-1.txt') # 数据
Z = [] # 聚类中心
theta = 0.7
# 1.选个中心
Z.append(X[0])
X.remove(X[0])
# 2.选个离第一个中心最远的点做第二个聚类中心
index = 1
p = 0
for i in range(X.__len__()):
a = MathUtil.ED(Z[0], X[i])
if p < a:
p = a
index = i
Z.append(X[index])
X.remove(X[index])
# 3.计算剩余各特征矢量到z_1,z_2的距离并求出最小值
d = []
for i in range(X.__len__()):
a = []
for j in range(Z.__len__()):
a.append(MathUtil.ED(Z[j], X[i]))
d.append(min(a))
# 4.看是否有其余中心点
l = MathUtil.ED(Z[0], Z[1])
f = 1
while f:
d = []
for i in range(X.__len__()):
a = []
for j in range(Z.__len__()):
a.append(MathUtil.ED(Z[j], X[i]))
d.append(min(a))
a = max(d)
if a > theta * l:
Z.append(X[i])
X.remove(X[i])
else:f = 0
#5.将剩余点按最小距离原则分配
ans = [] #结果集
for i in range(Z.__len__()):
ans.append([])
ans[i].append(Z[i])
for i in range(X.__len__()):
l = float('inf')
idx = 0
for j in range(Z.__len__()):
b = MathUtil.ED(Z[j],X[i])
if b<l:
l = b
idx= j
ans[idx].append(X[i])
for i in ans:
print(i)
import math
class FileUtil:
@staticmethod
def openFile(fileName): #按行读取坐标信息
f = open(fileName)
X = []
for line in f:
data = line.split()
X.append([int(data[0]), int(data[1])])
return X
import math
class MathUtil:
@staticmethod
def ED(x,y): #计算欧式距离
sum = 0
for i in range(x.__len__()):
sum += (x[i]-y[i])**2
return math.sqrt(sum)
结果
第1类:
[[0, 0], [0, 1], [1, 0]]
第2类:
[[5, 5], [4, 4], [4, 5], [5, 4]]