您的当前位置:首页正文

一文详解Python中logging模块的用法

2024-11-04 来源:个人技术集锦

一、低配logging

日志总共分为以下五个级别,这个五个级别自下而上进行匹配 debug-->info-->warning-->error-->critical,默认最低级别为warning级别。

1.v1

import logging

logging.debug('调试信息')
logging.info('正常信息')
logging.warning('警告信息')
logging.error('报错信息')
logging.critical('严重错误信息')

WARNING:root:警告信息
ERROR:root:报错信息
CRITICAL:root:严重错误信息

v1版本无法指定日志的级别;无法指定日志的格式;只能往屏幕打印,无法写入文件。因此可以改成下述的代码。

2.v2

import logging

# 日志的基本配置

logging.basicConfig(filename='access.log',
                    format='%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S %p',
                    level=10)

logging.debug('调试信息')  # 10
logging.info('正常信息')  # 20
logging.warning('警告信息')  # 30
logging.error('报错信息')  # 40
logging.critical('严重错误信息')  # 50

可在logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为,可用参数有:

  • filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。
  • filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
  • format:指定handler使用的日志显示格式。
  • datefmt:指定日期时间格式。
  • level:设置rootlogger(后边会讲解具体概念)的日志级别
  • stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件,默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。

format参数中可能用到的格式化串:

  • %(name)s Logger的名字
  • %(levelno)s 数字形式的日志级别
  • %(levelname)s 文本形式的日志级别
  • %(pathname)s 调用日志输出函数的模块的完整路径名,可能没有
  • %(filename)s 调用日志输出函数的模块的文件名
  • %(module)s 调用日志输出函数的模块名
  • %(funcName)s 调用日志输出函数的函数名
  • %(lineno)d 调用日志输出函数的语句所在的代码行
  • %(created)f 当前时间,用UNIX标准的表示时间的浮 点数表示
  • %(relativeCreated)d 输出日志信息时的,自Logger创建以 来的毫秒数
  • %(asctime)s 字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
  • %(thread)d 线程ID。可能没有
  • %(threadName)s 线程名。可能没有
  • %(process)d 进程ID。可能没有
  • %(message)s用户输出的消息

v2版本不能指定字符编码;只能往文件中打印。

3.v3

logging模块包含四种角色:logger、Filter、Formatter对象、Handler

  • logger:产生日志的对象
  • Filter:过滤日志的对象
  • Formatter对象:可以定制不同的日志格式对象,然后绑定给不同的Handler对象使用,以此来控制不同的Handler的日志格式
  • Handler:接收日志然后控制打印到不同的地方,FileHandler用来打印到文件中,StreamHandler用来打印到终端
'''
critical=50
error =40
warning =30
info = 20
debug =10
'''


import logging

# 1、logger对象:负责产生日志,然后交给Filter过滤,然后交给不同的Handler输出
logger = logging.getLogger(__file__)

# 2、Filter对象:不常用,略

# 3、Handler对象:接收logger传来的日志,然后控制输出
h1 = logging.FileHandler('t1.log')  # 打印到文件
h2 = logging.FileHandler('t2.log')  # 打印到文件
sm = logging.StreamHandler()  # 打印到终端

# 4、Formatter对象:日志格式
formmater1 = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',
                               datefmt='%Y-%m-%d %H:%M:%S %p',)

formmater2 = logging.Formatter('%(asctime)s :  %(message)s',
                               datefmt='%Y-%m-%d %H:%M:%S %p',)

formmater3 = logging.Formatter('%(name)s %(message)s',)


# 5、为Handler对象绑定格式
h1.setFormatter(formmater1)
h2.setFormatter(formmater2)
sm.setFormatter(formmater3)

# 6、将Handler添加给logger并设置日志级别
logger.addHandler(h1)
logger.addHandler(h2)
logger.addHandler(sm)

# 设置日志级别,可以在两个关卡进行设置logger与handler
# logger是第一级过滤,然后才能到handler
logger.setLevel(30)
h1.setLevel(10)
h2.setLevel(10)
sm.setLevel(10)

# 7、测试
logger.debug('debug')
logger.info('info')
logger.warning('warning')
logger.error('error')
logger.critical('critical')

二、高配logging

1.配置日志文件

以上三个版本的日志只是为了引出我们下面的日志配置文件

import os
import logging.config

# 定义三种日志输出格式 开始
standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \
                  '[%(levelname)s][%(message)s]'  # 其中name为getLogger()指定的名字;lineno为调用日志输出函数的语句所在的代码行
simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s'
# 定义日志输出格式 结束

logfile_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))  # log文件的目录,需要自定义文件路径 # atm
logfile_dir = os.path.join(logfile_dir, 'log')  # C:\Users\oldboy\Desktop\atm\log

logfile_name = 'log.log'  # log文件名,需要自定义路径名

# 如果不存在定义的日志目录就创建一个
if not os.path.isdir(logfile_dir):  # C:\Users\oldboy\Desktop\atm\log
    os.mkdir(logfile_dir)

# log文件的全路径
logfile_path = os.path.join(logfile_dir, logfile_name)  # C:\Users\oldboy\Desktop\atm\log\log.log
# 定义日志路径 结束

# log配置字典
LOGGING_DIC = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'standard': {
            'format': standard_format
        },
        'simple': {
            'format': simple_format
        },
    },
    'filters': {},  # filter可以不定义
    'handlers': {
        # 打印到终端的日志
        'console': {
            'level': 'DEBUG',
            'class': 'logging.StreamHandler',  # 打印到屏幕
            'formatter': 'simple'
        },
        # 打印到文件的日志,收集info及以上的日志
        'default': {
            'level': 'INFO',
            'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件
            'formatter': 'standard',
            'filename': logfile_path,  # 日志文件
            'maxBytes': 1024 * 1024 * 5,  # 日志大小 5M  (*****)
            'backupCount': 5,
            'encoding': 'utf-8',  # 日志文件的编码,再也不用担心中文log乱码了
        },
    },
    'loggers': {
        # logging.getLogger(__name__)拿到的logger配置。如果''设置为固定值logger1,则下次导入必须设置成logging.getLogger('logger1')
        '': {
            # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
            'handlers': ['default', 'console'],
            'level': 'DEBUG',
            'propagate': False,  # 向上(更高level的logger)传递
        },
    },
}



def load_my_logging_cfg():
    logging.config.dictConfig(LOGGING_DIC)  # 导入上面定义的logging配置
    logger = logging.getLogger(__name__)  # 生成一个log实例
    logger.info('It works!')  # 记录该文件的运行状态
    
    return logger


if __name__ == '__main__':
    load_my_logging_cfg()

2.使用日志

import time
import logging
import my_logging  # 导入自定义的logging配置

logger = logging.getLogger(__name__)  # 生成logger实例


def demo():
    logger.debug("start range... time:{}".format(time.time()))
    logger.info("中文测试开始。。。")
    for i in range(10):
        logger.debug("i:{}".format(i))
        time.sleep(0.2)
    else:
        logger.debug("over range... time:{}".format(time.time()))
    logger.info("中文测试结束。。。")


if __name__ == "__main__":
    my_logging.load_my_logging_cfg()  # 在你程序文件的入口加载自定义logging配置
    demo()

三、Django日志配置文件

# logging_config.py
# 学习中遇到问题没人解答?小编创建了一个Python学习交流群:711312441
LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'standard': {
            'format': '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]'
                      '[%(levelname)s][%(message)s]'
        },
        'simple': {
            'format': '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
        },
        'collect': {
            'format': '%(message)s'
        }
    },
    'filters': {
        'require_debug_true': {
            '()': 'django.utils.log.RequireDebugTrue',
        },
    },
    'handlers': {
        # 打印到终端的日志
        'console': {
            'level': 'DEBUG',
            'filters': ['require_debug_true'],
            'class': 'logging.StreamHandler',
            'formatter': 'simple'
        },
        # 打印到文件的日志,收集info及以上的日志
        'default': {
            'level': 'INFO',
            'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件,自动切
            'filename': os.path.join(BASE_LOG_DIR, "xxx_info.log"),  # 日志文件
            'maxBytes': 1024 * 1024 * 5,  # 日志大小 5M
            'backupCount': 3,
            'formatter': 'standard',
            'encoding': 'utf-8',
        },
        # 打印到文件的日志:收集错误及以上的日志
        'error': {
            'level': 'ERROR',
            'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件,自动切
            'filename': os.path.join(BASE_LOG_DIR, "xxx_err.log"),  # 日志文件
            'maxBytes': 1024 * 1024 * 5,  # 日志大小 5M
            'backupCount': 5,
            'formatter': 'standard',
            'encoding': 'utf-8',
        },
        # 打印到文件的日志
        'collect': {
            'level': 'INFO',
            'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件,自动切
            'filename': os.path.join(BASE_LOG_DIR, "xxx_collect.log"),
            'maxBytes': 1024 * 1024 * 5,  # 日志大小 5M
            'backupCount': 5,
            'formatter': 'collect',
            'encoding': "utf-8"
        }
    },
    'loggers': {
        # logging.getLogger(__name__)拿到的logger配置
        '': {
            'handlers': ['default', 'console', 'error'],
            'level': 'DEBUG',
            'propagate': True,
        },
        # logging.getLogger('collect')拿到的logger配置
        'collect': {
            'handlers': ['console', 'collect'],
            'level': 'INFO',
        }
    },
}


# -----------
# 用法:拿到俩个logger

logger = logging.getLogger(__name__)  # 线上正常的日志
collect_logger = logging.getLogger("collect")  # 领导说,需要为领导们单独定制领导们看的日志
您可能感兴趣的文章:

个人技术集锦还为您提供以下相关内容希望对您有帮助:

Python 中 logging 模块使用详情

logging 模块是python自带的一个包,因此在使用的时候,不必安装,只需要import即可。有5个level,分别是debug,主要是查看一下程序运行的信息,一般是调试程序要看的信息;info,是我们看程序是否如预料执行的信息;warn,意料之外的,但是不影响程序运行; error 和 critical 就是一些比较严重的...

基于Python中的logging日志模块进行代码调试

在实际应用中,通过调用set_logger函数,如set_logger(__file__),可以在日志信息中包含模块名称,便于追踪来源。《Python从入门到精通(第2版)》是一本推荐的教材,书中详细讲解了Python编程的基础和进阶内容,包括日志调试,对初学者和开发者都有很大帮助,通过实例学习和高清教学视频,能快速提升开发...

玩转Python日志模块(logging)

对此结合Python官方文档总结以下执行任务对应的工具: 需要执行的任务| 任务对应的工具 ---|--- 直接打印程序结果 | print 记录程序普通操作(比如请求记录,状态监控) | logging.info() 程序发生特殊事件引发的警告信息 | logging.warning() 程序发生特殊事件引发错误 | 直接抛出异常(raise Exception) 报告错误而不引...

Python接口自动化之logging日志

Python内置logging模块,提供日志记录功能,支持自定义日志等级、保存路径等。二、Logging模块 01 logging模块介绍 logging模块用于生成、记录日志,功能强大,使用简单。02 logging模块优势 相比print,logging模块日志输出更加灵活,支持多级日志过滤,便于调试。03 logging日志框架的组成 日志框架包含日志记录器、...

Python之log

在编程过程中,日志是一种记录应用程序运行时信息的方法,帮助开发者诊断问题并维护软件。日志包含各种事件的描述,如错误、警告、信息等。二、logging模块级别的函数 Python的logging模块提供了一系列函数来处理日志,包括debug、info、warning、error和critical。这些函数允许在程序中记录不同级别的信息,帮助...

Python + logging输出到屏幕,将log日志写入到文件

Python的logging模块提供了一套强大的日志处理工具,包括debug(), info(), warning(), error()和critical()等函数,根据事件的严重程度进行区分。这些函数的级别和用途如下,从轻到重依次为:debug用于详细信息,info用于一般信息,warning用于提示性信息,error表示错误,而critical则是最重要的紧急情况。在...

20231207_python基础-logger模块

可能需要将日志不断地写入持久化的文件,可以使用`RotatingFileHandler`来实现定期或按大小滚动日志文件:pythonhandler = logging.handlers.RotatingFileHandler('myapp.log', maxBytes=1024 * 1024, backupCount=5)以上是Logger模块的一些基础用法,熟练掌握后,可以帮助你更好地追踪和调试代码中的问题。

python logging 使用记录:设置INFO级别不生效,格式化,输出到文件_百度...

这时可以正常输出INFO了 此时第二个logger也被设置了INFO级别了,查看源码:可以看到名字为None时返回的是一个root对象,这也是为什么第二个logger也被修改的原因。常见的输出到控制台和文件 默认只是输出了message,这样子还不如直接用print()函数了。所以还需要格式化一下:设置格式化要用到logging.Handler...

Python Flask + Gunicorn + Docker 的日志输出设置

程序运行时,访问 http://localhost:8000/,命令行窗口将输出日志信息。我们可以通过 logging 模块的输出处理器(Handler)实现标准输出、文件输出或邮件提醒。例如,添加日志文件:访问 http://localhost:8000,将在当前目录下生成 flask.log 日志文件。常见的日志文件按天分割,方便查找。同时,日志中还需...

logging是什么意思

使用logging首先要创建一个logger对象,然后设置其日志级别。接下来,可以通过调用相关的方法记录不同级别的日志。logging模块还有许多高级功能,如使用配置文件进行日志记录、同时记录到终端和文件、对不同模块设置不同的日志级别等。这些高级功能可以使日志记录更加高效、灵活和可配置。logging是Python中常用的...

显示全文

猜你还关注