本文摘自:http:///friendbaby/article/details/6822690
刚才在百度知道上看见一个网友问int型的数最大能存多少。这个问题其实计算机系统结构里有讲解。
首先,我们要知道在计算机里怎么存储数字的。在计算机里,对数字编码有3种方式:原码、补码、反码。原码其实就是10进制数直接转2进制数的结果。比如:十进制的18,在二进制里是10010。那这里的10010就是原码。我们可以sizeof一下我们自己的电脑上int型占几个字节。我的是4个字节,也就是说只有32个位。如果一个十进制数转位二进制数位数大于32,就溢出,其实也就是存不下了。
我们存数不仅仅有正数还有负数,在计算机里如何区分正数负数?我们规定最高位是符号位。为0是正,为1负。所以最高位是不可以参加计算的。比如二进制数1000最高位是符号位的话,转十进制不是8,而是-0,对就是负0(正0的二进制形式是0000)。如果给一个十进制形式的负数,如何计算它的补码?
1.计算这个数绝对值的二进制表示。
2.把2^n写成二进制形式减去这个数,得到的就是补码。
比如:-5,
1. 5的二进制形式是:0101.最高位是符合位,为0是正。
2. 1111-101,二进制的减法,补码就是1010.最高位是符合位,为1是负。
反码不常用,我没有细心学。
所以,int占32位的时候,最大可以赋值为:2147483647。也就是0x7fffffff。注意:7的二进制形式最高位为0,如果你对2147483647+1.输出的就是-2147483648。这个数是负数中最大的数,也就是int型可以表示的最小的负数。它的十六进制表示为:0x8fffffff,8的二进制形式最高位是符号位,是1,为负。