import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# 使用numpy生成200个随机点,作为样本
x_data = np.linspace(-0.5, 0.5, 200)[:,np.newaxis] #生成从-0.5到0.5均匀分布的200个数值,扩展到二维(200*1)
noise = np.random.normal(0,0.02,x_data.shape) #生成随机值,形状和x_data一样
y_data = np.square(x_data) + noise
# 定义两个placeholder
x = tf.placeholder(tf.float32,[None, 1]) #(浮点型,定义形状[行不确定,列为一列])
y = tf.placeholder(tf.float32,[None, 1])
# 定义神经网络中间层(10个神经元)
Weights_L1 = tf.Variable(tf.random.normal([1,10])) #权重,tensorflow中的变量,赋值随机数(1*10)[输入层个数,中间层个数]
biases_L1 = tf.Variable(tf.zeros([1,10])) #偏置,初始化为0
Wx_plus_b_L1 = tf.matmul(x,Weights_L1) + biases_L1 #信号的总和,矩阵乘法(输入一个矩阵,权值也是矩阵)+偏置
L1 = tf.nn.tanh(Wx_plus_b_L1) #双曲正切函数作为激活函数,得到中间层的输出L1
# 定义神经网络输出层(1个神经元)
Weights_L2 = tf.Variable(tf.random.normal([10,1]))
biases_L2 = tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L2 = tf.matmul(L1,Weights_L2) + biases_L2
prediction = tf.nn.tanh(Wx_plus_b_L2)
# 定义二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction)) #真实值-预测值,再求平均值
# 使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) #学习率为0.1,最小化loss
#定义绘画
with tf.Session() as sess:
#变量的初试化(只要使用到就要初始化)
sess.run(tf.global_variables_initializer())
for _ in range (2000): #训练2000次
sess.run(train_step,feed_dict={x:x_data,y:y_data})
#获得预测值
prediction_value = sess.run(prediction,feed_dict={x:x_data})
#画图显示预测的结果
plt.figure()
plt.scatter(x_data,y_data)
plt.plot(x_data,prediction_value,'r-',lw=5)
plt.show()
点赞,关注,收藏?,➕,?点赞,关注,收藏?,➕,?点赞,关注,收藏?,➕,?
????????????????????????????????
????????????????????????????????