https://yq.aliyun.com/articles/53598
http:///taiyang1987912/article/details/43731629
摘要: 本文简单介绍了当前Windows支持的各种Socket I/O模型. 老陈有一个在外地工作的女儿,不能经常回来,老陈和她通过信件联系。他们的信会被邮递员投递到他们的信箱里。这和Socket模型非常类似。
老陈有一个在外地工作的女儿,不能经常回来,老陈和她通过信件联系。他们的信会被邮递员投递到他们的信箱里。
这和Socket模型非常类似。下面就以此为例讲解Socket I/O模型。
老陈非常想看女儿的信,以至于他什么都不做,就站在门口等。直到接到邮递员给他的信件才开心的看信回信。
这就是阻塞模型,进程阻塞在socket的接收函数上。
但是不吃不喝一直站门口等着总不行吧。所以他每隔10分钟就下楼检查信箱,看是否有女儿的信 。
在这种情况下,“下楼检查信箱“ 然后回到楼上耽误了老陈太多的时间,以至于老陈无法做其他工作。
select模型和老陈的这种情况非常相似:周而复始地去检查…… 如果有数据……接收/发送 …….
服务器的几个主要动作如下:
后来,老陈使用了微软公司的新式信箱。这种信箱非常先进,一旦信箱里有新的信件,盖茨就会给老陈打电话:喂,大爷,你有新的信件了!从此,老陈再也不必频繁上下楼检查信箱了,牙也不疼了,你瞅准了,蓝天 ……不是,微软~~~~~~~~
微软提供的WSAAsyncSelect模型就是这个意思。
WSAAsyncSelect模型是Windows 下最简单易用的一种Socket I/O模型。使用这种模型时,Windows会把网络事件以消息的形式通知应用程序。
服务器的几个主要动作如下:
特点:需要建立一个窗口用于接收消息。
后来,微软的信箱非常畅销,购买微软信箱的人以百万计数……以至于盖茨每天 24小时给客户打电话,累得腰酸背痛,喝蚁力神都不好使~~~~~~
微软改进了他们的信箱:在客户的家中添加一个附加装置,这个装置会监视客户的信箱,每当新的信件来临,此装置会发出 “新信件到达”声,提醒老陈去收信。盖茨终于可以睡觉了。
服务器的几个主要动作如下:
特点:最多可以支持WSA_MAXIMUM_WAIT_EVENTS个对象,他的大小是64。
后 来,微软通过调查发现,老陈不喜欢上下楼收发信件,因为上下楼其实很浪费时间。于是微软再次改进他们的信箱。新式的信箱采用了更为先进的技术,只要用户告诉微软自己的家在几楼几号,新式信箱会把信件直接传送到用户的家中,然后告诉用户,你的信件已经放到你的家中了!老陈很高兴,因为他不必再亲自收发信件 了!
Overlapped I/O 事件通知模型和WSAEventSelect模型在实现上非常相似,主要区别在”Overlapped”,Overlapped 模型是让应用程序使用重叠数据结构(WSAOVERLAPPED),一次投递一个或多个 Winsock I/O请求。这些提交的请求完成后,应用程序会收到通知。什么意思呢?就是说,如果你想从 socket上接收数据,只需要告诉系统,由系统为你接收数据,而你需要做的只是为系统提供一个缓冲区 ~~~~~
老陈接收到新的信件后,一般的程序是:打开信封—-掏出信纸 —-阅读信件—-回复信件 ……为了进一步减轻用户负担,微软又开发了一种新的技术:用户只要告诉微软对信件的操作步骤,微软信箱将按照这些步骤去处理信件,不再需要用户亲自拆信 /阅读/回复了!老陈终于过上了小资生活!
Overlapped I/O 完成例程要求用户提供一个回调函数,发生新的网络事件的时候系统将执行这个函数。
特点:由I/O来完成socket的拆包工作,实现异步。
微软信箱似乎很完美,老陈也很满意。但是在一些大公司情况却完全不同!这些大公司有数以万计的信箱,每秒钟都有数以百计的信件需要处理,以至于微软信箱经常因超负荷运转而崩溃!需要重新启动!微软不得不使出杀手锏 ……
微软给每个大公司派了一名名叫”Completion Port”的超级机器人,让这个机器人去处理那些信件!
特点:动用一个合理数量的线程来接受信息,然后把信息投送到应用程序。
“Windows NT小组注意到这些应用程序的性能没有预料的那么高。特别的,处理很多同时的客户请求意味着很多线程并发地运行在系统中。因为所有这些线程都是可运行的 [没有被挂起和等待发生什么事], Microsoft意识到NT内核花费了太多的时间来转换运行线程的上下文[Context],线程就没有得到很多CPU时间来做它们的工作。大家可能也都感觉到并行模型的瓶颈在于它为每一个客户请求都创建了一个新线程。创建线程比起创建进程开销要小,但也远不是没有开销的。我们不妨设想一下:如果事先开好 N个线程,让它们在那hold[堵塞 ],然后可以将所有用户的请求都投递到一个消息队列中去。然后那N 个线程逐一从消息队列中去取出消息并加以处理。就可以避免针对每一个用户请求都开线程。不仅减少了线程的资源,也提高了线程的利用率。理论上很不错,你想我等泛泛之辈都能想出来的问题, Microsoft又怎会没有考虑到呢?”—– 摘自nonocast的《理解I/O Completion Port》
select、poll、epoll简介
epoll跟select都能提供多路I/O复用的解决方案。在现在的内核里有都能够支持,其中epoll是Linux所特有,而select则应该是POSIX所规定,一般均有实现
select:
select本质上是通过设置或者检查存放fd标志位的来进行下一步处理。这样所带来的缺点是:
1、 单个进程可监视的fd数量被限制,即能监听端口的大小有限。
一般来说这个数目和系统内存关系很大,具体数目可以cat /proc/sys/fs/file-max察看。32位机默认是1024个。64位机默认是2048.
2、 对socket进行扫描时是线性扫描,即采用轮询的方法,效率较低:
当套接字比较多的时候,每次select()都要通过遍历FD_SETSIZE个Socket来完成调度,不管哪个Socket是活跃的,都遍历一遍。这会浪费很多CPU时间。如果能给套接字注册某个回调函数,当他们活跃时,自动完成相关操作,那就避免了轮询,这正是epoll与kqueue做的。
3、需要维护一个用来存放大量fd的数据结构,这样会使得用户空间和内核空间在传递该结构时复制开销大
poll:
poll本质上和select没有区别,它将用户传入的数组拷贝到内核空间,然后查询每个fd对应的设备状态,如果设备就绪则在设备等待队列中加入一项并继续遍历,如果遍历完所有fd后没有发现就绪设备,则挂起当前进程,直到设备就绪或者主动超时,被唤醒后它又要再次遍历fd。这个过程经历了多次无谓的遍历。
它没有最大连接数的限制,原因是它是基于链表来存储的,但是同样有一个缺点:
epoll: epoll支持水平触发和边缘触发,最大的特点在于边缘触发,它只告诉进程哪些fd刚刚变为就需态,并且只会通知一次。还有一个特点是,epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来激活该fd,epoll_wait便可以收到通知
epoll的优点:
1、支持一个进程所能打开的最大连接数
select | 单个进程所能打开的最大连接数有FD_SETSIZE宏定义,其大小是32个整数的大小(在32位的机器上,大小就是32*32,同理64位机器上FD_SETSIZE为32*64),当然我们可以对进行修改,然后重新编译内核,但是性能可能会受到影响,这需要进一步的测试。 |
poll | poll本质上和select没有区别,但是它没有最大连接数的限制,原因是它是基于链表来存储的 |
epoll | 虽然连接数有上限,但是很大,1G内存的机器上可以打开10万左右的连接,2G内存的机器可以打开20万左右的连接 |
2、FD剧增后带来的IO效率问题
select | 因为每次调用时都会对连接进行线性遍历,所以随着FD的增加会造成遍历速度慢的“线性下降性能问题”。 |
poll | 同上 |
epoll | 因为epoll内核中实现是根据每个fd上的callback函数来实现的,只有活跃的socket才会主动调用callback,所以在活跃socket较少的情况下,使用epoll没有前面两者的线性下降的性能问题,但是所有socket都很活跃的情况下,可能会有性能问题。 |
3、 消息传递方式
select | 内核需要将消息传递到用户空间,都需要内核拷贝动作 |
poll | 同上 |
epoll | epoll通过内核和用户空间共享一块内存来实现的。 |
总结:
综上,在选择select,poll,epoll时要根据具体的使用场合以及这三种方式的自身特点。
1、表面上看epoll的性能最好,但是在连接数少并且连接都十分活跃的情况下,select和poll的性能可能比epoll好,毕竟epoll的通知机制需要很多函数回调。
2、select低效是因为每次它都需要轮询。但低效也是相对的,视情况而定,也可通过良好的设计改善
select,poll,epoll都是IO多路复用的机制。I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间。关于这三种IO多路复用的用法,前面三篇总结写的很清楚,并用服务器回射echo程序进行了测试。连接如下所示:
select:
poll:
epoll:
今天对这三种IO多路复用进行对比,参考网上和书上面的资料,整理如下:
1、select实现
select的调用过程如下所示:
(1)使用copy_from_user从用户空间拷贝fd_set到内核空间
(2)注册回调函数__pollwait
(3)遍历所有fd,调用其对应的poll方法(对于socket,这个poll方法是sock_poll,sock_poll根据情况会调用到tcp_poll,udp_poll或者datagram_poll)
(4)以tcp_poll为例,其核心实现就是__pollwait,也就是上面注册的回调函数。
(5)__pollwait的主要工作就是把current(当前进程)挂到设备的等待队列中,不同的设备有不同的等待队列,对于tcp_poll来说,其等待队列是sk->sk_sleep(注意把进程挂到等待队列中并不代表进程已经睡眠了)。在设备收到一条消息(网络设备)或填写完文件数据(磁盘设备)后,会唤醒设备等待队列上睡眠的进程,这时current便被唤醒了。
(6)poll方法返回时会返回一个描述读写操作是否就绪的mask掩码,根据这个mask掩码给fd_set赋值。
(7)如果遍历完所有的fd,还没有返回一个可读写的mask掩码,则会调用schedule_timeout是调用select的进程(也就是current)进入睡眠。当设备驱动发生自身资源可读写后,会唤醒其等待队列上睡眠的进程。如果超过一定的超时时间(schedule_timeout指定),还是没人唤醒,则调用select的进程会重新被唤醒获得CPU,进而重新遍历fd,判断有没有就绪的fd。
(8)把fd_set从内核空间拷贝到用户空间。
总结:
select的几大缺点:
(1)每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大
(2)同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大
(3)select支持的文件描述符数量太小了,默认是1024
2 poll实现
poll的实现和select非常相似,只是描述fd集合的方式不同,poll使用pollfd结构而不是select的fd_set结构,其他的都差不多。
关于select和poll的实现分析,可以参考下面几篇博文:
3、epoll
epoll既然是对select和poll的改进,就应该能避免上述的三个缺点。那epoll都是怎么解决的呢?在此之前,我们先看一下epoll和select和poll的调用接口上的不同,select和poll都只提供了一个函数——select或者poll函数。而epoll提供了三个函数,epoll_create,epoll_ctl和epoll_wait,epoll_create是创建一个epoll句柄;epoll_ctl是注册要监听的事件类型;epoll_wait则是等待事件的产生。
对于第一个缺点,epoll的解决方案在epoll_ctl函数中。每次注册新的事件到epoll句柄中时(在epoll_ctl中指定EPOLL_CTL_ADD),会把所有的fd拷贝进内核,而不是在epoll_wait的时候重复拷贝。epoll保证了每个fd在整个过程中只会拷贝一次。
对于第二个缺点,epoll的解决方案不像select或poll一样每次都把current轮流加入fd对应的设备等待队列中,而只在epoll_ctl时把current挂一遍(这一遍必不可少)并为每个fd指定一个回调函数,当设备就绪,唤醒等待队列上的等待者时,就会调用这个回调函数,而这个回调函数会把就绪的fd加入一个就绪链表)。epoll_wait的工作实际上就是在这个就绪链表中查看有没有就绪的fd(利用schedule_timeout()实现睡一会,判断一会的效果,和select实现中的第7步是类似的)。
对于第三个缺点,epoll没有这个限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,举个例子,在1GB内存的机器上大约是10万左右,具体数目可以cat /proc/sys/fs/file-max察看,一般来说这个数目和系统内存关系很大。
总结:
(1)select,poll实现需要自己不断轮询所有fd集合,直到设备就绪,期间可能要睡眠和唤醒多次交替。而epoll其实也需要调用epoll_wait不断轮询就绪链表,期间也可能多次睡眠和唤醒交替,但是它是设备就绪时,调用回调函数,把就绪fd放入就绪链表中,并唤醒在epoll_wait中进入睡眠的进程。虽然都要睡眠和交替,但是select和poll在“醒着”的时候要遍历整个fd集合,而epoll在“醒着”的时候只要判断一下就绪链表是否为空就行了,这节省了大量的CPU时间。这就是回调机制带来的性能提升。
(2)select,poll每次调用都要把fd集合从用户态往内核态拷贝一次,并且要把current往设备等待队列中挂一次,而epoll只要一次拷贝,而且把current往等待队列上挂也只挂一次(在epoll_wait的开始,注意这里的等待队列并不是设备等待队列,只是一个epoll内部定义的等待队列)。这也能节省不少的开销。
参考资料: