摘要:我们一般说的天文望远镜是一个广义的概念,凡是有目的用于观察星体或特定现象的仪器基本上都能归纳为天文望远镜;而如果取狭义的概念,它用来表示我们民用的光学望远镜。那么,比较常见的射电望远镜和光学望远镜原理各是什么?射电望远镜原理是和光学反射望远镜相似,投射来的电磁波被一精确镜面反射后,同相到达公共焦点。下面一起来看看吧!
一、射电望远镜
射电望远镜是指观测和研究来自天体的射电波的基本设备,可以测量天体射电的强度、频谱及偏振等量 。包括收集射电波的定向天线,放大射电信号的高灵敏度接收机,信息记录﹑处理和显示系统等。20世纪60年代天文学取得了四项非常重要的发现:脉冲星、类星体、宇宙微波背景辐射、星际有机分子,被称为“四大发现”。这四项发现都与射电望远镜有关。
二、射电望远镜原理
射电望远镜原理是和光学反射望远镜相似,投射来的电磁波被一精确镜面反射后,同相到达公共焦点。用旋转抛物面作镜面易于实现同相聚焦,因此,射电望远镜天线大多是抛物面。射电望远镜表面和一理想抛物面的均方误差率不大于λ/16~λ/10,该望远镜一般就能在波长大于λ的射电波段上有效地工作。
对米波或长分米波观测,可以用金属网作镜面;而对厘米波和毫米波观测,则需用光滑精确的金属板(或镀膜)作镜面。从天体投射来并汇集到望远镜焦点的射电波,必须达到一定的功率电平,才能被接收机检测到。
目前的检测技术水平要求最弱的电平应达10 -20瓦。射频信号的功率首先在焦点处放大10~1000倍﹐并变换成较低频率(中频),然后用电缆将其传送至控制室,在那里再进一步放大﹑检波,最后以适于特定研究的方式进行记录、处理和显示。
天线收集天体的射电辐射,接收机将这些信号加工、转化成可供记录、显示的形式,终端设备把信号记录下来,并按特定的要求进行某些处理然后显示出来。表征射电望远镜性能的基本指标是空间分辨率和灵敏度,前者反映区分两个天球上彼此靠近的射电点源的能力,后者反映探测微弱射电源的能力。射电望远镜通常要求具有高空间分辨率和高灵敏度!
三、光学望远镜的原理
基本原理是光的折射。靠的是组成望远镜的两块透镜。望远镜的前面有一块直径大、焦距长的凸透镜,名叫物镜;后面的一块透镜直径小焦距短,叫目镜。物镜把来自远处景物的光线,在它的后面汇聚成倒立的缩小了的实像,相当于把远处景物一下子移近到成像的地方。而这景物的倒像又恰好落在目镜的前焦点处,这样对着目镜望去,就好象拿放大镜看东西一样,可以看到一个放大了许多倍的虚像。这样,很远很远的景物,在望远镜里看来就仿佛近在眼前一样。
四、光学望远镜和射电望远镜区别
射电望远镜和光学望远镜,相同点是它们都是观察天体发出的电磁波,而区别在于它们所接收的电磁波波长不同,射电望远镜接收的是无线电波,射电望远镜可以捕捉到很多肉眼看不到的光,而光学望远镜只能捕捉到可见光。
射电望远镜分辨率最高,因为射电望远镜可以看到比光学望远镜波长短很多倍的光,理论上看的是最远的,但是,射电望远镜成的像也是通过计算机处理过的,看到的不是天体的真实面目,精确度不如光学望远镜。
现在看的最远的是哈勃望远镜,属于光学望远镜,是折反射的,与普通望远镜没什么区别,虽然口径只有2.4米,但与地基望远镜比起来,它不受大气干扰的影响,与口径5米的海尔望远镜比起来,“哈勃”能看到140亿光年以外的天体,海尔望远镜只能看到20亿光年以外,大气层可以把星光减弱13倍。