您的当前位置:首页正文

半导体纳米材料论文0957-4484_21_11_115501

来源:个人技术集锦
HomeSearchCollectionsJournalsAboutContact usMy IOPscience

Ultraviolet photodetector arrays assembled by dielectrophoresis of ZnO nanoparticles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.2010 Nanotechnology 21 115501

(http://iopscience.iop.org/0957-4484/21/11/115501)The Table of Contents and more related content is available

Download details:

IP Address: 218.108.29.238

The article was downloaded on 21/03/2010 at 06:25

Please note that terms and conditions apply.

IOPPUBLISHING

Nanotechnology21(2010)115501(7pp)

NANOTECHNOLOGY

doi:10.1088/0957-4484/21/11/115501

Ultravioletphotodetectorarrays

assembledbydielectrophoresisofZnOnanoparticles

WenjingYan1,2,NormanMechau1,HorstHahn1,3andRalphKrupke1,3

Institutf¨urNanotechnologie,KarlsruheInstituteofTechnology,D-76021Karlsruhe,Germany2

SchoolofElectronicandInformationEngineering,Xi’anJiaotongUniversity,ShannXi710049,People’sRepublicofChina3

DFGCenterforFunctionalNanostructures(CFN),D-76028Karlsruhe,GermanyE-mail:ralph.krupke@kit.edu

1

Received7August2009,infinalform2January2010Published22February2010

Onlineatstacks.iop.org/Nano/21/115501

Abstract

SensitiveandfastultravioletsensorarrayshavebeenproducedbydielectrophoreticassemblingofZnOnanoparticles.Thesub-microndevicedimensionsinducelowoperatingvoltageandlowpowerconsumption.Thedevicesarelong-termstableandoperateinair,oxygenandnitrogen.Wehavedeterminedtheabsorptionanddesorptiondynamicsfromthetime-resolved

photoresponseandconcludethatoxygenorcarbondioxidearethephotodesorbedspecies.Wecouldderivethechargecarrierconcentrationandmobilityofthedevicefrommeasurementsofthelow-biasandhigh-biasphotocurrent.ThepresenceofdefectsisdiscussedbycomparingelectroluminescencespectrafrombiaseddeviceswithphotoluminescencespectralmapsofZnOdispersions.

SOnlinesupplementarydataavailablefromstacks.iop.org/Nano/21/115501/mmedia(Somefiguresinthisarticleareincolouronlyintheelectronicversion)

1.Introduction

Thereliablefabricationofnanoscaledevicesis,formanysystems,stillachallenge.Oftenitrequireseitherlithographicpatterningofamaterialwithnanoscaleprecisionorprecisesite-selectivedepositionofsynthesizednanoscalematerial.Inrecentyearssite-selectivedepositionschemeshavebeendeveloped,suchastheselectiveadsorptiononchemicallyfunctionalizedtemplates[1]ordielectrophoresisonthesub-micronscale[2].Therebydielectrophoresis(DEP)hasproventobeaversatilemethodforassemblingfunctionaldevicesfromarangeofbuildingblockssuchascarbonnanotubes[3],inorganicnanowires[4]orDNA[5].InthisworkwestudythedielectrophoreticassemblingofZnOnanoparticles(ZnO-NP)toformfunctionalsub-micronZnO-NPclusterarraysforUVsensing.High-densityUVsensorarraysbasedonDEPassemblingofZnO-NPhavenotbeenreportedbefore;however,ourapproachisrelatedtopreviouswork

0957-4484/10/115501+07$30.00

onmeasurementsonsol–gel-processedZnOnanowires[6]andspin-coatedcolloidalZnO-NPs[7].OurintentionistoexploretherathersimpleandscalabledielectrophoreticdepositionschemeincombinationwithcommercialZnO-NPs.SincetheUVsensingmechanisminZnOismediatedbysurfacechemistry,weanticipatesuperiorsensorperformanceforournanoscaleZnO-NPdevices.Indeedwewillshowthattheresponsetimeofourdevicesisshortandthatthesensitivityinvariousatmospheresishigh.Moreover,weobservethathighsensitivityisobtainedatsignificantlylowerpowerconsumptionascomparedtopreviousZnO-basedsensors.Tounderstandtheunderlyingphysicswehavemeasuredthelow-biasandhigh-biasphotocurrenttoderivethecarrierconcentrationandmobility,measuredthetime-resolvedphotoresponsetodeterminetheabsorptionanddesorptiondynamics,andstudiedelectroluminescence(EL)andphotoluminescence(PL)fromtheZnO-NPdevicestoobtaininformationaboutthedefectsintheZnO-NPs.The

1

©2010IOPPublishingLtdPrintedintheUK

Nanotechnology21(2010)115501WYanetal

dataiscomplementedbycharacterizationofthesamplemorphologywithscanningelectronmicroscopy(SEM)andatomicforcemicroscopy(AFM).

ThegeneralpropertiesofZnOhavebeenoutlinedbefore[8].ZnOisan-typesemiconductorwithnegligibleholeconduction,duetoexcesszincatomsoninterstitiallatticesites.MeasurementsoftheopticaltransmissionshowthatZnOisopaquebelow385nmandthattheexcitonbindingenergyis∼60meV[9].PhotoconductivityonZnOhasbeenreportedbyMollwoandStockmann[10],whohaveshownthatamaximumsensitivityoccursforilluminationinthevicinityoftheabsorptionedge.ThefirstsystematicstudyontheroleofoxygenonthephotoconductivityanditsinfluenceontheresponsetimehasbeenreportedbyMelnick[11].HisstudiessupportthemodelofMorrison[12]thatphysicallyabsorbedoxygenmoleculesactasanacceptortypeimpurity,removingfromtheconductionbandtheelectronswhichareprovidedbytheinterstitialzincatoms.ThedarkconductanceofZnOtherebydecreasessignificantlyifthesurfaceacceptorconcentrationexceedsthebulkdonorconcentration,whichisthecaseinsampleswithahighsurface-to-volumeratio,asinourZnO-NPclusters.

Melnickextendedthismodeltoexplaintheeffectoflight:illuminationintheultraviolet(UV)createselectron–holepairs,whichreadilydissociate.Aholeisattractedtothechargedoxygenmoleculeonthesurface.Asaresult,theoxygenlosesitschargeandbecomesphysicallyabsorbed.Thermalfluctuationswillcauserapiddesorptionandthephysicallyabsorbedmoleculeswilleventuallyreachequilibriumwiththegasmoleculesinthesurroundingatmosphere.Theelectronremainsintheconductionbandtoincreasethelocalconductivity.

MorrisonandMelnickhavedevelopedtheirmodelstoexplainmeasurementsonsinteredZnOpowdersamples.WewillseethatthecombinedmodelappliesalsototheresponseofDEP-assembledZnO-NPclusters.Inthefollowingwedescribetheexperimentalset-upandtheDEP-assistedassembling,discussthesteady-stateandtime-resolvedphotocurrentresponse,andpresentphotoluminescenceandelectroluminescencedata.

Figure1.(a)Schematicstructure(top)ofaZnOnanoparticledeviceassemblyonasilicon(blue)/SiO2(green)substrate.ZnO

nanoparticles(purple)areassembledbydielectrophoresisfromdispersionbetweentheelectrodes(yellow).(b)ScanningelectronmicrographoffivedeviceswithZnOnanoparticles(white)bridgingeachelectrodegap.(c)AtomicforcemicrographofthecentralregionofoneZnOnanoparticledevice.Theinsetshowsacross-sectionalheightprofile.

2.Experimentaldetails

Figure1(a)exhibitsaschematicoftheZnO-NPdevicearraystructure.Thedeviceswerepreparedonap-dopedsiliconsubstrate(<0.001󰀐cmsq−1)withan800nmthickthermalSiO2surface.Thesourceanddrainelectrodesweredefinedbyelectronbeamlithographyandsputteringofa5nmTiadhesionlayerand40nmPd,withatypicalgapsizeof800nm.Thesampleswereexposedfor5mintoanoxygenplasma(200Wpower,50mTorrpressure,30sccmflow)tomakethesubstratesurfacehydrophilic.

ZnOnanoparticlesproducedbyEvonikDegussaweresuspendedinwaterataconcentrationof10wt%withthecopolymericstabilizerTegoDispers752Watafixedconcentrationof10wt%,andcharacterizedbyUV–visabsorptionmeasurement(figure6(c))andphotoluminescencespectroscopy(figure6(b)).TheprimarysizesofZnO

2

nanoparticlesrangefrom20to100nm,determinedby

scanningelectronmicroscopy,asshowninfigureS1(availableatstacks.iop.org/Nano/21/115501/mmedia).Thedispersionwasdilutedbyafactorof1:20000withdouble-distilledwaterandsonicatedfor15mintobreakupagglomerates.AdropoftheZnOnanoparticlesuspension(∼5μl)wasplacedonthechipusingamicropipette.Then,anacelectricfieldwasappliedacrosstheelectrodesofthesample.Afunctiongeneratorwasoperatedatafrequencyfof300kHzandapeak-to-peakvoltageVPPof10V.After3min,thesamplewasrinsedwithdouble-distilledwater,gentlyblowndrybyastreamofnitrogengasandthepowerwasswitchedoff.Thesamplewasthenbond-wiredandmountedintoaceramicpackageandcharacterizedbyscanningelectronmicroscopy(SEM),atomicforcemicroscopy(AFM)andelectrontransportmeasurements.

DevicecharacteristicsweremeasuredwithanAgilent4155CSemiconductorParameterAnalyzerandaKeithley2400SourceMeterinastainless-steelchamber(40.2cm3)underaflowofoxygen,drynitrogen,wetnitrogenorair.Weusedaflowrateof3lpmat1barpres-sure.Wetnitrogenwasproducedbybubblingdryni-

Nanotechnology21(2010)115501WYanetal

trogenthroughawater-filledflask(figureS2availableatstacks.iop.org/Nano/21/115501/mmedia).Aquartzglassviewportprovidesaccesstoilluminatethesamplewithultraviolet(UV)lightfromafiber-coupledMikropackDH-2000-BALdeuteriumlightsource.Thelightintensityis∼20μWcm−2nm−1at370nm(figureS3availableatstacks.iop.org/Nano/21/115501/mmedia),thecorrespondingwavelengthtotheopticalgapofZnO.Thelightwasfocusedbyacollimatortoaspotsizeof∼2mmradius,yieldinganintegratedintensityof∼200μWcm−2nm−1atthesamplesurface.BytakingintoaccounttheZnO-NPdevicedimen-sions,thistranslatesintoanirradiationlevelof1pWnm−1perdevice.Thelong-termphotocurrentmeasurementshavebeenmadeunderilluminationwithaNichiaNSHU590BUVLEDwhichemits1.5mWat368nm(figureS4availableatstacks.iop.org/Nano/21/115501/mmedia).Thetime-resolveddatawasrecordedwithasamplingrateof2s−1.Inaddition,wemeasuredelectroluminescenceundervacuumbydetectingtheemittedlightwithanopticalmicroscopecoupledtoanActon2150ispectrometerandaPixis256ECCDcamera.Wepreparedintotaltendeviceswithcomparablemorphologyanddevicecharacteristics.Thedeviceswerestableunderambientconditionsforaboutfivemonthswithoutsignificantdegradationofdeviceperformance.

Figure2.Source–draincurrentIversussource–drainvoltageVSDofatypicalZnOnanoparticledeviceunderUVirradiationinN2,O2andambientair.Thesolidredlinesarepower-lawfits.

3.Resultsanddiscussions

3.1.Morphology

Figure1(b)showsanSEMmicrographoffiveadjacentdeviceswithtypicalmorphology.TheZnOnanoparticleshaveassembledintotheelectrodegapregionsandformsemi-spheroidalclustersof∼1μmdiameter,∼1μmlengthand0.5μmheight(figure1(c)).ThedepositionpatternofZnOnanoparticlesismarkedlydifferentfromthedepositionofconductingmetallicnanoparticles,wherepearl-chainformationisobservedduetoelectricfieldreconfiguration.Here,thedepositionpatternshowsthattheZnOparticlesdonotnotablychangetheelectricfieldduringassembling.ThiscanbeunderstoodiftheZnOnanoparticlesareinsulatingundertheassemblingconditions.IndeedthetypicalresistanceofourdeviceswithoutUVirradiationislargerthan1011󰀐andshowsatransient-current-inducedhysteresis(figureS5availableatstacks.iop.org/Nano/21/115501/mmedia).Therefore,theZnOclusterdimensionsaredefinedbythedielectrophoreticforcefield,whichdependsontheelectrodedimensions,theelectrodegapsizeandtheoxidethickness.Asaresult,thevariationsinthemorphologyfromdevicetodevicearerathersmallandyieldonlysmallvariationsinthedevicecharacteristics.3.2.Steady-statephotocurrent

Wewillnowdiscusstheelectrontransportmeasurements.AlldevicesshowagreatlyreducedresistanceuponilluminationwithUVlight,albeitwithsignificantdifferencesdependingonthegasatmosphere.Figure2showsinalog–logplotthesource–draincurrentIversussource–drainvoltageVSDcharacteristics(IV)ofatypicalZnOnanoparticledeviceindifferentgasatmospheresandunderidenticalUVillumination.

3

TheIVsareverysimilarformeasurementsinO2andin

α

ambientair.InbothcasesIobeysapowerlawI∝VSD,forVSD>0.8V,withα=2.3andα=2.8forO2andair,respectively.lnN2weobservetwopower-lawregimeswithα=1forVSD<0.3Vandα=1.8for0.3V>VSD>3V.

ThedatacanbeexplainedbytheMorrison–Melnickmodel:inZnO-NPswithalargesurface-to-volumeratio,chemisorptionatthesurfacecansignificantlyinfluencetheelectrontransportandthephotoconductivity.OurtransportdatasuggeststhatadsorptionofoxygendepletesthecarrierconcentrationintheZnOnanoparticledevices.SincechargecarriersmustpropagatethroughthesurfacelayeratthecontactpointsofZnOnanoparticles,weessentiallyprobethesurfacecarrierconcentrationanditsdependenceonadsorbatesandillumination.UVilluminationleadstoapartialdesorptionoftheadsorbatefromtheZnOnanoparticlesandtheresultingcurrentleveldependsonthesteady-stateadsorbateconcentration,whichinturndependsonthedynamicequilibriumbetweendesorptionrateandadsorptionrate,aswewillalsoseeinthetime-resolvedmeasurementslater.Innitrogen,wheretheoxygenadsorptionrateislow,nosurfacetrapstatesarepresentunderUVilluminationandweobserveanohmicbehavioratlowbias.Thisregimeisdominatedbythefreecarrierdensity.ForVSD>0.2V,wecanfittheslopeoftheI–V(∼1.9×10−8AV−2)toMott’sspace–charge-limitedcurrentmodel(SCLC)[13],whichinitssimplestformisgivenby

j=9εrε0μV2/8L3,(1)wherejisthecurrentdensity,μthedriftmobilityofthe

chargecarriers,εrtherelativedielectricconstantandLtheelectrodeseparation.SCLCisoftenobservedinwidebandgapsemiconductorswhenthematerialresistancegreatlyexceedsthecontactresistanceandthechargeinjectedbytheelectrodesexceedsthefreecarrierdensityinthematerial[14].Althoughstrictlyvalidonlyforaplane-paralleldielectric,weuseequation(1)toestimatethemobilityμ.Aslowerandupperboundsforthecurrentcarryingcrosssectionwetaketheelectrodecrosssection,200nm×45nm,andthe

Nanotechnology21(2010)115501WYanetal

clustercrosssection,π(0.5μm)2/2,respectively.Weobtain3cm2V−1s−1<μ<130cm2V−1s−1withεr=8.7andL=800nm,nottakingintoaccounttheclusterporosityandtherebyunderestimatingμ.Interestingly,theestimatedcarriermobilityinourZnOnanoparticledevicesunderUVilluminationislargerthaninZnOnanoparticledevicespreparedbyspin-casting[15–17]butiscomparabletovaluesreportedforepitaxialZnOthinfilms[18]andZnOnanowires[19].Wecanusethedriftmobilityμtoestimatethefreecarrierconcentrationnfromthelow-biasconductanceusingtheDrudeconductivityσ=qnμ.Weassumeμtobevoltage-independentandcalculaten≈1014cm−3.

Theconditionsaresomewhatdifferentinoxygen-containingenvironments,wheretheoxygenadsorptionrateishighandsurfacetrapstatesarepresentevenunderUVillumination.Thosestatesdepletethesurfacefreecarrierconcentrationandthesampleisinsulatingatlowbias(VSD<0.5V).ItisknownthattheenergydistributionofthetrapstatesdeterminestheI–Vcharacteristics.RosehasshownthatIdependsexponentiallyonVforauniformdistributionoftrapsinenergyE,whereasapower-lawdependenceisobtainedforatrapdensitythatdecreaseswiththedistancefromtheconductionband[14].Inourcase,weobserveathighbiasI∝Vαwithα≈2.8,andthereforeapproximateanexponentialdistributionntoftraps:

nt∝exp(−E/kTC),(2)

withthecharacteristictemperatureTC,andEbeingmeasuredfromthebottomoftheconductionband.Thisdistributionleadstothetrap-modulatedspace–charge-limitedcurrent

I∝V(TC/T)+1.

Fromα≈2.8wederiveTC=540KorEC=45meV.3.3.Time-resolvedphotocurrent

(3)

Sofarwehavereportedontheconductionundersteady-stateconditions.Inthefollowingwepresenttime-resolvedphotoconductivitymeasurementsinresponsetoUVirradiationforthepurposeofderivingabsorptionanddesorptionratesofthecarrierconcentrationquenchingspecies.

Figure3showsthetime-resolvedresponseofthecurrentIatVSD=2VtorepeatedUVlightswitchingwithcyclingtimestCbetween100and1000s.Theinitialsteady-statedarkcurrentIOFFis∼1–10pA,independentofthegasatmosphere.WhenUVirradiationisswitchedon,thecurrentincreasesbyseveralordersofmagnitudeandIreachesthesteady-statelevelION,withinanorderofmagnitude,afteracharacteristictimeτON.InN2,IONislargeandreachesupto100nA.InO2andinambientair,IONreachesonly1nAand10nA,respectively.WhenUVirradiationisswitchedoff,thecurrentdecreasesandIOFFreachestheinitialsteady-statecurrentifthecharacteristictimetOFFissmallerthanthecyclingtimetC.ThisisthecaseformeasurementsinO2.InN2,however,tOFF>tCandIOFFdoesnotreachtheinitialsteady-statelevel,evenafter20h.Asaresult,thereisadifferenceintheION/IOFFratiobetweenthe

4

Figure3.Time-resolvedphotocurrentmeasurementsinN2(a),inambientair(b)andinO2.OnandoffswitchingofUVilluminationisindicatedbythearrows.In(a)ambientairisinsertedafterthefourthcycle.

firstcycleandsubsequentcycles:TheinitialION/IOFFratiois104,3×103and103inN2,airandO2,respectively.InthesubsequentcyclesION/IOFFisreducedtoapprox.101and102inN2andair.However,underO2conditions,tOFFWehavefurtheranalyzedthedataandextractedτONandτOFFfromtheevolutionofIONandIOFFforeachcycle.WecouldfitIOFFwellwithasumoftwoexponentialfunctionsof

Nanotechnology21(2010)115501WYanetal

Table1.CharacteristictimeconstantsτON,τOFF,1andτOFF,2fromthefittingofthetime-resolvedphotocurrentdataoffigure3withequations(4)and(5).

τON

N2O2Air

0.97s±1.05s0.67s±0.25s1.51s±1.49s

τOFF,1

197s±96s8.8s±0.6s7.0s±1.1s

τOFF,2

578s±362s22.4s±2.4s29.7s±7.0s

thefollowingtype:

I=I0+Aexp(−t/τOFF,1)+Bexp(−t/τOFF,2),(4)

withtwocharacteristictimeconstantsτOFF,1andτOFF,2.ForIONwefoundgoodagreementwithalogarithmictimedependenceofthetype

I=I0+Alog(t/τON+1),(5)

withthecharacteristictimeconstantτON.ThetimeconstantsτON,τOFF,1andτOFF,1aregivenintable1.Atypicalfittingforonecycleisshowninfigure4(a).Melnickhasalreadysuggestedalogarithmicratelawforthedesorptionprocess[11],whichappearstobeuniversalformanysystemsasexplainedbyLandsberg[20].InMelnick’smodeltheincreaseinconductivityisproportionaltothedecreaseofthedensityofabsorbedgasonthesurfacenC.WecanthereforeinferfromthechangeinIthechangeinnCusingδnC=|δI|.Thebi-exponentialdecayofthecurrenthasalsobeenobservedbefore[21],andrecentlythetwoprocessesforcarrierlosshavebeenproposedtobeduetotrappingbythesurfacestatesandrecombinationatdeepdefectstates[22].

Thetime-resolveddataclearlyshowsthatthesteady-statecurrentandtheresponseofthecurrenttoUVlightstronglydependsonthepresenceofoxygen.Theentiredatasetcanbeunderstoodbyoxygenadsorptionanddesorptionprocesses:theZnOnanoparticlesintheas-prepareddeviceareinitiallycoveredwithoxygenandwatermolecules,duetoprocessingin,anddepositionfrom,aqueousdispersion.Theabsorbedoxygen,whichquenchesthesurfacecarrierconcentration,appearstobestableevenunderaflowofN2,anddeterminestheinitialvalueofIOFF.

WhenweswitchtheUVlighton,presumablyoxygenstartstodesorb.Thedatashowsthatthedesorptionprocessisfastandindependentfromthegasatmosphereandfollowsequation(5)withτON≈1s.Asthedesorptionratedecreaseswithtime,thesteadystateofnCandIONisreachedwhenthedesorptionrateisequaltotheadsorptionrate.WeassignfluctuationsinIONduetothisdynamicequilibrium.InO2andairtheadsorptionratesarelargeandnCisreducedbytwoordersofmagnitude(insubsequentcycles).InN2theabsorptionrateisverylowandnCisreducedbyfourordersofmagnitude,withintC.

WhenweswitchtheUVlightoff,thedesorptionrateiszeroandtheabsorptionratecausesnCtoincrease.InO2andairwithlargeadsorptionrates,nCincreasesrapidlyandthenewsteadystateIOFFisreachedfollowingequation(4)withτOFF,1≈8sandτOFF,2≈25s.InN2,wheretheoxygenabsorptionrateisverylowandonlyduetoresidualoxygen,

5

Figure4.(a)Zoomintofigure3(c).Thetime-resolvedphotocurrentisfittedbyabi-exponentialfunctionforthecurrentdecay(UVoff)andalogarithmicfunctionforthecurrentrise(UVon).τOFF,1,τOFF,2andτONarethecorrespondingcharacteristictimeconstants.(b)PhotocurrentresponseoninsertionofwetN2anddryN2at

constantUVillumination.(c)Long-termphotocurrentmeasurementunderconstantUVilluminationindryO2.

nCincreasesonlyveryslowlyandreachesthenewsteadystatefollowingequation(4)withτOFF,1≈200sandτOFF,2≈580s.Attheendofthelastcycleinfigure3(a)IOFFdropssharplyafterinsertionofambientair.

AtthispointwewouldliketoemphasizethattheDEP-assembledZnO-NPclustersensorsarecharacterizedbyfastswitching(oftheorderofseconds),highsensitivity(ofthe

Nanotechnology21(2010)115501WYanetal

orderoftwodecadesofcurrentper∼1pWnm−1at370nmexcitation),lowoperatingvoltage(∼0.3V)andlowpowerconsumption(∼1nW),ThisisauniquecombinationascomparedtootherZnO-baseddevices[6,7,23].3.4.Theroleofwater

WehaveshownthatDEP-assembledZnOclusterdevicesaresensitiveandfastUVdetectorsinoxygenandair.Toascertaintheinfluenceofwateronthephotocurrent,wemeasuredthetime-resolvedphotoresponseindryandwetnitrogenunderUVlight.Infigure4(b)weobserveacontinuousslightincreaseinthephotocurrentwithtime,atrendlinewithapositiveslope,whichweattributetotheongoingphotodesorptionofoxygen.Whenweinsertwater-saturatedN2,thistrendisinterruptedandthephotocurrentdecreasessignificantly,mostlikelyduetoadsorptionofwater.WhenweswitchbacktodryN2,thephotocurrentrecovers.Interestingly,thephotocurrentapproachesasymptoticallytheprevioustrendline.Thiscanbeunderstoodiftheoxygendesorptionisnotinfluencedbytheadsorptionanddesorptionofwater.WealsonotethattheresponsetowetN2andtothesubsequentexposuretodryN2isslowconsideringthetimescaleinvolved.WethereforeconcludethatwaterplaysonlyaminorroleforthephotoresponseofourZnO-NPdevicesinthepresenceofoxygen.Thisexplainswhythecharacteristictimescalesforadsorptionanddesorptioninoxygenandairareidenticalwithintheexperimentalerror.Itmeansthatthedeviceperformanceunderambientconditionsisnotsensitivetohumidity,whichisimportantforpracticalapplications.3.5.Theroleofcarbon

TheZnO-NPclustershavebeenassembledfromadispersionstabilizedbyacopolymer,andweexpectthesurfaceoftheZnO-NPstobecontaminatedwithcarbon.Thequestionariseswhethercarbonimpuritiesinfluencethephotoresponse.Interestingly,ShapiraandLichtmanhaveshownbymass-spectrometricanalysisofphotodesorptionfromZnOthatCO2istheonlyphotodesorbedspeciesfromsingle-crystalandpowdersamples[24].TheirconclusionisthatoxygendoesnotchemisorbonZnOsurfacesbutonlyonimpuritycarbonsites.InthisprocessoxygenchemisorptiontakesplaceuponelectroncapturefromtheZnOconductionbandandchemisorbedCO−2moleculesareproduced.Underilluminationphoto-generatedholesrecombinewithCO−2toformphysisorbedCO2species,whichcanthenbethermallydesorbed.Theauthorscouldalsoshowthatcarbon-freesurfacesareinerttooxygenandthatsurfaceswithcarbonimpuritiesbecomeinertunderextendedUVillumination.

WehavestudiedthephotocurrentofourZnO-NPclusterdevicesunderextendedUVilluminationindryO2.Themeasurementisshowninfigure4(c)andshowsasmallbutcontinuousdecreaseofthephotocurrentwithtime,whichcouldbeduetoacontinuousdepletionofcarbonimpurities.However,inthemorerecentliteraturetheinfluenceofcarbonimpuritiesonthephotoconductanceisnotmentioned.InsteaddesorptionofwaterfromtheZnOsurfaceisoften

6

Figure5.ElectroluminescenceintensityversusemissionwavelengthfromabiasedZnOnanoparticledevice(VSD=5V).Thebroadpeakcenteredat710nm(redcurve)hasbeenderivedfromthedata(blackcurve)bysubtractingaPlanckspectrum(bluecurve).Inset:photographofalight-emittingcontact.

discussed[6,25].Itwouldrequirecouplingofourexperimentwithamassspectrometertoobtaininformationaboutthedesorbedspecies.

3.6.Electroluminescenceandphotoluminescence

Wewillnowextendthediscussiononelectrontransporttowardstheroleofdefects.ThemobilityinourdevicesismostlikelylimitedbysurfacescatteringattheNPinterfaces.Unfortunately,itisdifficulttoobtainaninsightintothenatureofthescatteringmechanismatlowbias.Weuseelectroluminescence(EL)todetectinelasticscatteringprocessesatlargebias.Thedatahasbeenacquiredonasamplewithamodifiedelectrodeconfiguration(Insetinfigure5).Figure5showsaspectrumobtainedatVSD=5V.Thespectrumshowsanincreasingintensitytowardslongerwavelengthplusabroadpeak.WehavefittedthemonotonicallyincreasingbackgroundwithaPlanckspectrumandderivedadevicetemperatureof1140K.Thedeconvolutedpeakhasitsmaximumat710nmandawidthof∼100nm.Electroluminescenceatasimilarwavelengthhasbeenreportedrecentlyandassignedtoanoxygen-richZnOphase[26].WewantedtoinvestigatewhethertheelectroluminescenceisduetoinelasticscatteringatthesurfaceorinthebulkoftheZnO-NPs.WeperformedphotoluminescencemeasurementsondispersedZnO-NPsoverawiderangeofexcitationwavelengthsλexc.Figure6showsthedataintheformofatwo-dimensionalphotoluminescencecontourmap(PLmap).Firstofall,wenoteamarkeddifferenceintheoverallemissionintensitybelowandaboveλexc=370nm.Weemphasizethatthisisexactlythewavelengthatwhichtheopticalabsorptionsetsin(rightinsetinfigure6).ThereforewecandividethePLmapintotworegions:PLfromλexc>370nm,whichmustbeduetoinelasticsurfacescattering,andPLfromλexc<370nm,whichisprimarilyduetoinelasticscatteringinthebulk.Interestingly,theelasticRayleighscatteringintensityatλexc>370nmismuchlargerthanatλexc<370nm,whichweassigntotheincreaseof

Nanotechnology21(2010)115501WYanetal

indicatesthepresenceofanoxygen-richphase.ThedatahasbeencomparedtophotoluminescencespectralmapsofZnOdispersions,whichindicatesthepresenceofanoxygen-deficientbulkphase.Analysisofthephotoluminescencemapatlowexcitationenergieswheresurfacescatteringdominatesisongoing.

Wenotethat,intheprocessoffinalizingthedocument,Kumarandco-workersreportedDEPtrappingofZnOnanoparticlesintonanogaps[29].Theauthorsannouncedtheywouldpublishdetailedphotoconductivitycharacteristicsinaforthcomingpublication.Itwillbeinterestingtocomparetheirresultswithourwork.

Acknowledgments

TheauthorsthankSDehmforassistancewithelectronbeamlithography,MEngelforAFMmeasurement,SEssigforelectroluminescencemeasurements,andCWMarquardt,AVijayaraghavanandSLebedkinforhelpfuldiscussions.ThefinancialsupportbytheInitiativeandNetworkingFundoftheHelmholtz-GemeinschaftDeutscherForschungszentren(HGF)andanequipmentgrantbyAgilentTechnologiesaregratefullyacknowledged.WealsothanktheEvonikGmbHforsupplyingtheZnOnanoparticlesandthestabilizer.

Figure6.(a)Two-dimensionalphotoluminescencecontourmap(photoluminescenceintensityversusexcitationandemissionwavelengths)ofdispersedZnOnanoparticles.First-andsecond-orderRayleighscatteringindicatedbyblackdashes,respectively.(?)marksanunidentifiedfeature.

(b)Photoluminescencespectraat350nmexcitation.Peakpositionsaregivenandsecond-orderRayleighscattering(∗)andfluorescencepeak(∗∗)indicated.(c)Correspondingabsorptionspectra.

thenumbersofscatteringcentersandthelargesurface-to-volumeratiooftheZnO-NPs.Inthebulk-relatedregimeatλexc<370nmwehaveidentifiednear-band-edgeemissionatλem=381nmandabroaddefect-relatedgreenfluorescenceemissionwithanmaximumatλem≈500nm(topinsetinfigure6).Thegreenfluorescenceemissionisoftenattributedtodefectstatesofoxygenvacancies[27,28].Bothemissions,thenear-band-edgeemissionandthegreenemission,appearasverticallinesforexcitationinthebulkatλexc<370nm.Inthesurfacescatteringregime,atλexc>370nm,theintensityofemissionincreasesovertheholespectralrange.Furthermore,theintensityoftheexcitedlightincreasesduetolowabsorptionandanincreaseofthenumbersofscatteringcentersforelasticRayleighscattering.At700nmweobservespectralfeatureswhichfittotheELdata.Thisfeaturecancorrelatetodefectstates,butunfortunatelywecannotexcludeanexperimentalartifactinducedbyscatteringeffects.

References

[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29]

LiuJetal1999Chem.Phys.Lett.303125

GreenNGetal1997J.Biochem.Biophys.Methods3589KrupkeRetal2003NanoLett.31019DongLetal2005NanoLett.52112

TuukkaanenSetal2005Appl.Phys.Lett.87183102AhnSE2004Appl.Phys.Lett.845022JinYZetal2008NanoLett.81649

HahnEEetal1951J.Appl.Phys.22855

GoodeveCFandKitchenerJA1938Trans.FaradaySoc.34902

MollwoEandStockmanF1948Ann.Phys.3223MelnickDA1957J.Chem.Phys.261136MorrisonSR1955Adv.Catalysis7259

MottNFandGurneyRW1940ElectronicProcessesinIonicCrystals(NewYork:OxfordUniversityPress)p172RoseA1955Phys.Rev.971538

OkamuraK,MechauN,NikolovaDandHahnH2008Appl.Phys.Lett.93083105

MorrisBJetal2003J.Phys.D:Appl.Phys.36L105BubelSetal2009J.Appl.Phys.105064514

KaidashevEMetal2003Appl.Phys.Lett.823901GoldbergerJetal2005J.Phys.Chem.B1099LandsbergPT1955J.Chem.Phys.231079AhnSEetal2004Appl.Phys.Lett.845022

BeraAandBasakD2008Appl.Phys.Lett.93053102SociCetal2007NanoLett.71003

ShapiraY,CoxSMandLichtmanD1976Surf.Sci.5443SunRDetal2001J.Phys.Chem.B1051984ZhaoXetal2008SolidStateCommun.147447

LinBX,FuZXandJiaYB2001Appl.Phys.Lett.79943DjurisicABandLeungYH2006Small2944KumarSetal2009Appl.Phys.Lett.94153104

4.Conclusion

InsummarywehaveshownthatsensitiveandfastultravioletsensorarrayscanbefabricatedbydielectrophoreticassemblingofZnOnanoparticleclusters.Thedevicesarelong-termstableandoperateindifferentatmospheres.Theoperatingvoltagesandpowerconsumptionarelowduetothesub-microndevicedimensions.WehavestudiedindetailthephotoconductivitymechanismintheZnOnanoparticleclustersandconcludethattheearlymodelofMorrisonandMelnickapplies.Theroleofcarbonandwaterremainsinconclusiveanddeservesfutureattention.Theelectroluminescencedata

7

因篇幅问题不能全部显示,请点此查看更多更全内容