浅析光伏电站发电量与光伏组件衰减的关系
摘要:在光伏电站建设前期的项⽬可⾏性评估中,对光伏电站的发电量进⾏估算具有⾮常重要的意义,因为这将直接影响到项⽬的收益预期。⽬前系统设计⼈员常⽤软件来模拟第⼀年的发电量,本⽂将基于第⼀年估算的发电量,并试图计算随后24年发电量。
关键词:光伏电站组件衰减发电量估算 PVSYST模拟1 前⾔
由于全球的能源危机问题,风能、太阳能等资源丰富的新能源逐渐占有重要的地位。世界太阳能光伏发电系统在近⼏年⾥保持持续⾼速增长,到2012年世界光伏发电累积装机容量已经达到102GW[1],并且成为增长速度最快的发电技术,光伏发电在20多个国家实现平价上⽹。
随着核⼼器件光伏组件的技术不断突破,效率不断提升,光伏发电系统的度电成本会逐渐的逼近传统的⽕⼒发电成本,同时随着储能技术的不断发展,届时,光伏发电系统由于它的系统规模随意、安装要求门槛低等优点将会在世界各地更普遍的应⽤开来。
在整个光伏系统应⽤市场⾥,⽬前并⽹光伏系统占有绝对主导的地位,皆依赖于并⽹光伏技术的不断发展成熟、相应设备性能成本的不断研发进步以及各国政府在政策⽅⾯的积极推进。2 光伏发电系统的原理
由于光伏发电系统根据实际的应⽤⼤体上分为并⽹系统和独⽴系统[2],由于并⽹系统应⽤所占的份额较⼤,本⽂着重分析并⽹系统的发电量估算。
同时,由于系统规模和场合条件的不同,并⽹系统也有多种系统形式,本⽂对发电量的评估是按较⼤规模的光伏电站作为模型,且光伏电站所处的环境条件⽐较好。图2-1为⼀个典型的⼤型地⾯电站的发电原理框图
图2-1 ⼤型电站发电原理简图
整个系统主要由光伏⽅阵和交(直)流输变电组成,光伏⽅阵输出的直流电经过直流线路汇流后通过逆变器转变为波形规则、频率稳定的交流电,然后就地进⾏⼀次升压到中压后,在中压交流线路上进⾏汇流后再进⾏⼆次集中升压,最后接⼊电⽹进⾏并⽹。
根据图⽰,通常在产权点会安装⼀个有效的电能计量表对光伏电站发电量进⾏计量,这是最为准确的统计数据。根据最初⼏年的计量统计数据对模拟数据进⾏分析修正,可以较为准确的预估今后的发电量。3 光伏电站发电量损耗因素分析[3]
要在项⽬前期⽐较准确的预估光伏电站的发电量,除了对光伏电站的系统结构有深刻的了解外,也必须对主要的设备性能参数有很深刻的了解。同时,如果要对发电量进⾏更长年限的预估时,则必须全⾯考虑长时间内外界环境因素的影响和电站运营状况的预估。
分析第⼀年光伏电站的发电量估算时,通常需要考虑的损耗因素如下:⑴倾斜⾯太阳光辐照量修正;⑵组件表⾯灰尘等异物挡光的影响;⑶温度对光伏组件输出的影响;⑷光伏组件的⾃⾝衰减;⑸组串内组件的匹配损失;
⑹⽅阵前后排之间的阴影遮挡损失;⑺直流线路损失;⑻逆变器转换效率损失;
⑼本地变压器损耗;⑽交流线路损失;⑾主变压器损耗;⑿电站⾃⽤电损耗;⒀停机时间损失;
通常采⽤PVSYST软件模拟发电量时,没有考虑⾃⽤电和停机时间的损耗,只是考虑其它因素的⼀个综合数据。
分析后⾯24年的光伏电站发电量时,运营管理是最主要的影响因素,但预估性差,通常假定其与其它因素不发⽣变化,只是考虑光伏组件⾃⾝的衰减。4 光伏组件功率的衰减分析
在实际中,光伏组件在制造出来后就⼀直处于衰减的状态,不过在包装内未见光时衰减⾮常慢,⼀旦开始接受太阳光照射后,衰减会急剧加快,衰减⼀定⽐例后逐渐稳定下来,如图4-1所⽰的第⼀年衰减曲线模型⽰意图,
图4-1 光伏组件第⼀年衰减曲线模型
图4-1中第⼀年3%的总衰减数据取⾃正泰太阳能多晶硅组件的25年衰减保证当中,其25年衰减保证如图4-2所⽰,
图4-2 光伏组件衰减曲线
从图4-2中可以看出第⼀年光伏组件最⼤衰减值为3%,后⾯24年每年衰减值为0.7%。
由于初始阶段的衰减与光强有着直接的关系,因此在第⼀年内,在平均光强条件下,基本上前期呈现急剧衰减,后期逐渐平稳的状态。但是实际上,⼀个光伏电站从组件开始安装到最后开始并⽹发电这个时间跨度都是不⼀定的,到开始计量发电量的时候,组件可能已经进⾏了⼀定⽐例的衰减了,为了减⼩实际情况与理论估算的误差,除了在质保起始时间做要求外,⼀般组件在出⼚时都会有⼀定⽐例的正功率偏差,这个正功率偏差可以覆盖⼀部分由于⼀些⼈为因素导致的组件在没有发电的情况下的⼀些衰减损耗。
所以在理论计算上,发电量模拟计算的额定功率起始点可以等同于光伏组件出⼚时的额定功率,⽽且⼀年内组件的衰减可视为线性衰减。
5 光伏电站发电量的估算
光伏电站年发电量计算事实上是光伏电站实时输出功率与时间的函数积分,如图5-1所⽰,
图5-1 光伏发电功率-时间曲线⽰意图
为了便于计算,通常将上图等效为标准光强下的输出功率与峰值⽇照⼩时数的矩形图,如图5-2所⽰,
图5-2 光伏发电功率-时间等效矩形图
所以每年的光伏电站发电量Q=等效功率P′×峰值⽇照时间H×365天,其中等效功率P ′在实际⼀天当中是⼀个波动的数值,计算公式可⽤下式(式5-1)表⽰,等效功率P′=额定装机功率P×系统综合效率η(式5-1)为便于计算光伏电站25年的发电量,可将式5-1表述为式5-2,如下
等效功率P′=额定装机功率P×组件平均效率η1×系统其它损失因素综合效率η2(式5-2)
综合上述,光伏电站年发电量Q=额定装机功率P×组件平均效率η1×系统其它损失因素综合效率η2×峰值⽇照时间H×365天,在25年期限中,除了组件平均效率η1,其它项的乘积可视为⼀个不变的常数Q?,则最终的表达式为光伏电站年发电量Q= Q×组件平均效率η1(式5-3)。
组件平均效率η1——(年初组件额定容量⽐例+年末组件额定容量⽐例)/2
⽐例的正功率偏差,这个正功率偏差可以覆盖⼀部分由于⼀些⼈为因素导致的组件在没有发电的情况下的⼀些衰减损耗。所以在理论计算上,发电量模拟计算的额定功率起始点可以等同于光伏组件出⼚时的额定功率,⽽且⼀年内组件的衰减可视为线性衰减。
综上所述,以正泰太阳能多晶硅组件的衰减保证为例,25年的年组件平均效率如下表所⽰:
表5-1 25年组件额定容量变化预测表
表5-2 25年发电量估算关系式
如采⽤PVSYST软件估算光伏电站第⼀年发电量时,系统效率⾥是没有考虑电站⾃⽤电和停机时间这两项的,但是不影响根据第⼀年的估算值来计算后⾯24年的预估发电量。根据前⾯的表述,⽤PVSYST估算第⼀年发电量时,如果在Detailedlosses中Module efficiency loss设定为1.5%,则表⽰第⼀年计算的组件平均效率为98.5%,则第⼆年估算发电量为第⼀年的98.12%,第三年为第⼀年的97.41%,第四年为第⼀年的96.70%,依次例推,可以看出从第⼆年开始,后⾯每年的预估发电量约在前⼀年的基础上减少0.7%。6 总结
根据以上的推算⼤致得出以下结论:在其它因素不变的情况下,⼀个光伏电站的发电量⼤致跟光伏组件的衰减呈同⽐关系。然⽽,实际运⾏当中,组件表⾯的清洁、设备的故障率、电站的管理是影响后期电站发电量的主要因素,记录电站实际运⾏当中的损耗因素影响程度,然后对估算的发电量进⾏修正具有⾮常重要的意义。参考⽂献
【1】王⼀波,郭靖(译),Geoff Stapleton, Susan Neill(编);太阳能光伏并⽹发电系统, 2014,3(1)【2】王长贵,王斯成;太阳能光伏发电实⽤技术,2009,9(3)【3】李英姿;太阳能光伏并⽹发电系统设计与应⽤,2013,8(1)
因篇幅问题不能全部显示,请点此查看更多更全内容