上次打印时间:2013-4-7 21:59:00
二次函数 计算题专项练习试卷
姓名:___________班级:________考号:_______
1、如下图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上. (1)求的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求与之间的函数关系式,并写出自变量的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
2、如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(-1,0),以AB的中点P为圆心,AB为直径作⊙P与轴的正半轴交于点C。 (1)求经过A、B、C三点的抛物线对应的函数表达式。
(2)设M为(1)中抛物线的顶点,求直线MC对应的函数表达式。 (3)试说明直线MC与⊙P的位置关系,并证明你的结论。
3、已知;函数是关于的二次函数,求: (1)满足条件m的值。
(2)m为何值时,抛物线有最底点?求出这个最底点的坐标,这时为何值时y随的增大而增大?
(3)m为何值时,抛物线有最大值?最大值是多少?这时为何值时,y随的增大而减小. 4、如图所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系. (1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L.
(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)
UZL
第 1 页 共 7 页 2013-4-7
109504032.doc
上次打印时间:2013-4-7 21:59:00
5、如图,在平面直角坐标系中,抛物线=-
+
+经过A(0,-4)、B(
,0)、
C(,0)三点,且-=5.
(1)求、的值;
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.
6、已知:如图,抛物线
与轴交于点
,点
,与直线
相交于点
,
点,直线与轴交于点. (1)写出直线的解析式. (2)求的面积. (3)若点在线段上以每秒1个单位长度的速度从向运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从向运动.设运动时间为秒,请写出
的面积与的函数关系式,并求出点运动多少时间时,的面积最大,最
大面积是多少?
7、王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中(m)是球的飞行高度,(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
UZL
第 2 页 共 7 页
2013-4-7
109504032.doc
上次打印时间:2013-4-7 21:59:00
(1)请写出抛物线的开口方向、顶点坐标、对称轴. (2)请求出球飞行的最大水平距离.
(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.
8、已知二次函数
…
中,函数与自变量的部分对应值如下表: … … … (1)求该二次函数的关系式;
(2)当为何值时,有最小值,最小值是多少?
(3)若,两点都在该函数的图象上,试比较与的大小.
9、一家电脑公司推出一款新型电脑,投放市场以来3个月的利润情况如图所示,该图可以近似看作为抛物线的一部分,请结合图象,解答以下问题:
(1)求该抛物线对应的二次函数解析式。
(2)该公司在经营此款电脑过程中,第几月的利润最大?最大利润是多少?
(3)若照此经营下去,请你结合所学的知识,对公司在此款电脑的经营状况(是否亏损?何时亏损?)作预测分析。 10、我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.
如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
UZL
第 3 页 共 7 页 2013-4-7
109504032.doc
上次打印时间:2013-4-7 21:59:00
11、如图,二次函数y=ax+bx+c(a>0)与坐标轴交于点A、B、C且OA=1,OB=OC=3 . (1)求此二次函数的解析式. (2)写出顶点坐标和对称轴方程.
(3)点M、N在y=ax2+bx+c的图像上(点N在点M的右边),且MN∥ x轴,求以MN为直径且与x轴相切的圆的半径.
2
12、如图,在平面直角坐标系中,圆M经过原点O,且与轴、轴分别相交于
两点.
(1)求出直线AB的函数解析式;
(2)若有一抛物线的对称轴平行于轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;
(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得若存在,请求出点P的坐标;若不存在,请说明理由.
?
13、如图,已知抛物线与轴交于点,,与轴交于点. (1)求抛物线的解析式及其顶点的坐标; (2)设直线交轴于点.在线段的垂直平分线上是否存在点,使得点
UZL
第 4 页 共 7 页
到直线
2013-4-7
109504032.doc
上次打印时间:2013-4-7 21:59:00
的距离等于点到原点的距离?如果存在,求出点的坐标;如果不存在,请说明理由; (3)过点作轴的垂线,交直线于点,将抛物线沿其对称轴平移,使抛物线与线段总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?
14、如图,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=.
(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
(4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
15、已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2。若以O为坐标原点,OA所在直线为轴,建立如图所示的平面直角坐标系,点B在第一象限内。将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处。 (1)求点C的坐标;
(2)若抛物线(≠0)经过C、A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作轴的平行线,交
UZL
第 5 页 共 7 页
2013-4-7
109504032.doc
上次打印时间:2013-4-7 21:59:00
抛物线于点M。问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由。 注:抛物线
(≠0)的顶点坐标为
,对称轴公式为
16、已知抛物线y=ax+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB (4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由。 2 17、已知抛物线y=ax+bx+c与y轴交于A(0,3),与x轴分别交于B(1,0)、C(5, 0)两点. (1)求此抛物线的解析式; (2)若一个动点P自OA的中点M出发先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A,求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长. 18、已知点A(a,)、B(2a,y)、C(3a,y)都在抛物线(1)求抛物线与x轴的交点坐标; (2)当a=1时,求△ABC的面积; (3)是否存在含有 UZL 上. 、y、y,且与a无关的等式?如果存在,试给出一个,并加以证明; 第 6 页 共 7 页 2013-4-7 109504032.doc 上次打印时间:2013-4-7 21:59:00 如果不存在,说明理由. 19、某宾馆有客房间,当每间客房的定价为每天元时,客房会全部住满.当每间客房每天的定价每涨元时,就会有间客房空闲.如果旅客居住客房,宾馆需对每间客房每天支出元的各种费用. (1)请写出该宾馆每天的利润(元)与每间客房涨价(元)之间的函数关系式; (2)设某天的利润为元,元的利润是否为该天的最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时客房定价应为多少元? (3)请回答客房定价在什么范围内宾馆就可获得利润? 20、如下图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2。 (1)求A、B 两点的坐标及直线AC的函数表达式; (2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值; UZL 第 7 页 共 7 页 2013-4-7 因篇幅问题不能全部显示,请点此查看更多更全内容