您的当前位置:首页正文

3.4等式的基本性质

来源:个人技术集锦

  教学目标:

  知识目标:掌握不等式的基本性质。

  能力目标:通过不等式基本性质的探索,培养学生观察、猜想、验证的能力。

  情感目标:经历不等式基本性质的探索过程,初步体会不等式与等式的异同。

  教学重、难点:

  1、重点:掌握不等式的基本性质。

  2、难点:不等式的基本性质2和3。

  教学准备:

  教师准备:课件

  教学设计过程:

  一、创设情境,探究新知:

  1、合作学习

  已知a<b和b<c,在数轴上表示。

  由数轴上a和c的位置关系,你能得出什么结论?你那举几个具体的例子说明吗?

  会发现:当不等式两边加或减去同一个数时,不等号的方向不变

  当不等式的两边同乘同一个正数时,不等号的方向_不变;而乘同一个负数时,不等号的方向改变。

  2、归纳

  不等式的基本性质1若a<b和b<c,则a<c。

  这个性质也叫做不等式的传递性。

  不等式的基本性质2不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立。

  即

  如果a>b,那么a+c>b+c,a-c>b-c;

  如果a<b,那么a+c<b+c,a-c<b-c。

  不等式的基本性质3不等式的两边都乘以(或除以)同一个正数,所得的.不等式仍成立;不等式的两边都乘以(或除以)同一个负数,必须把不等号的方向改变,所得的不等式成立。

  即

  如果a>b,且c>0,那么ac>bc,>;

  如果a>b,且c<0,那么ac<bc,<;

  3、做一做P104

  4、试一试

  (1)若-m5,则m___-5。

  (2)如果x/y0那么xy___0。

  (3)如果a-1,那么a-b___-1-b。

  5、做一做P105

  6、讲解例题

  已知a<0,试比较2a与a的大小。

  分析比较2a与a的大小,可以利用不等式的基本性质,也可以利用数轴,直接得出2a与a的大小。

  二、巩固反思:

  1、P106T1、T2“

  2、探究活动

  比较等式与不等式的基本性质。

  例如,等式是否有与不等式的基本性质1类似的传递性?不等式是否有与等式的基本性质类似的移项法则?你可以用列表的方式进行对比。(请与你的伙伴交流)

  三、小结:

  通过这节课的学习,你有哪些收获?

  四、作业:

  1、作业题P107

  2、预习5.3不等式与不等式组

因篇幅问题不能全部显示,请点此查看更多更全内容