您的当前位置:首页正文

质子交换膜燃料电池阳极氮气吹扫策略的设计方法[发明专利]

来源:个人技术集锦
(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 107946614 A(43)申请公布日 2018.04.20

(21)申请号 201711135247.4(22)申请日 2017.11.13

(71)申请人 天津大学

地址 300072 天津市南开区卫津路92号(72)发明人 焦魁 王博文 

(74)专利代理机构 天津盛理知识产权代理有限

公司 12209

代理人 董一宁(51)Int.Cl.

H01M 8/04089(2016.01)H01M 8/04223(2016.01)H01M 8/04298(2016.01)

权利要求书1页 说明书4页 附图4页

CN 107946614 A(54)发明名称

质子交换膜燃料电池阳极氮气吹扫策略的设计方法(57)摘要

本发明公开了一种质子交换膜燃料电池阳极氮气吹扫策略的设计方法,定义判断了吹扫策略优劣性的指标,在不同电池运行工况下提供合适、优异的吹扫策略。策略设计包括三项参数的选择:1不同电流密度下工作的扫气开始时刻;2

利用电池堆排气阀吹扫气流速;3扫气最佳时长。

扫阳极的氮气,既使可提高燃料能量转化效率,又可减少氢气排放的目的。通过比较能量利用率和燃料浪费率两项指标判定扫气策略的优异性,衡量吹扫策略优劣性的指标-能量利用率和燃料浪费率。通过对实际燃料电池工况进行扫气策略设计,可以提高燃料电池能量转化效率,也减少了氢气燃料的浪费排放,实现质子交换膜燃料电池阳极内氮气吹扫策略的优化。

CN 107946614 A

权 利 要 求 书

1/1页

1.质子交换膜燃料电池阳极氮气吹扫策略的设计方法,其特征是:扫气策略设计包括三项参数的选择:(1)不同电流密度下工作的扫气开始时刻;(2)扫气流速;(3)扫气最佳时长,利用电池堆排气阀吹扫阳极的氮气,通过比较能量利用率和燃料浪费率两项指标判定扫气策略的优异性。

2.按照权利要求1所述的一种质子交换膜燃料电池阳极氮气吹扫策略的设计方法,其特征是:所述扫气开始时刻的设计是指,当燃料电池瞬时输出电压低于初始给定的电压峰值百分比的时刻,此时,电池堆排气阀完全打开,吹扫阳极内积累的氮气。

3.按照权利要求1所述的一种质子交换膜燃料电池阳极氮气吹扫策略的设计方法,其特征是所述扫气流速的设计是指:以阳极化学当量比确定扫气流速,吹扫所用的气体为干燥氢气,吹扫的阳极化学当量比不小于正常工作下的阳极化学当量比,并且不同电流密度下采用不同的扫气流速。

4.按照权利要求1所述的一种质子交换膜燃料电池阳极氮气吹扫策略的设计方法,其特征是所述扫气最佳时长的设计是指:以扫气过程中电池电压恢复的指标来判定扫气最佳时长,当扫气中燃料电池电压恢复或者接近设定的初始峰值后,关闭电池堆排气阀,燃料电池返回正常工作状态,扫气过程结束。

5.按照权利要求1所述的一种质子交换膜燃料电池阳极氮气吹扫策略的设计方法,其特征是:从燃料电池开始正常工作,电压衰减,开始扫气至扫气结束整个过程中,能量利用率是指燃料电池所产生电能与氢气总消耗量的低位热值之比;燃料浪费率是指扫气中阳极出口排出氢气量与整个过程氢气总消耗量之比,两个物理量计算公式如下:

能量利用率:

燃料浪费率:

其中ηηI为输出电流密度,V(t)为每一时刻输出energy为能量利用率,waste为燃料浪费率,电压,F为法拉第常数,Aact为电池活化面积,口面积,程。

为扫气过程中出口氢气通量,Aout为流道出

为氢气低位热值,角标tot表示正常工作与扫气整个过程,purge表示扫气过

2

CN 107946614 A

说 明 书

质子交换膜燃料电池阳极氮气吹扫策略的设计方法

1/4页

技术领域

[0001]本发明属于电化学燃料电池领域,具体涉及一种维持燃料电池高性能输出的设计方法。

背景技术

[0002]燃料电池汽车具有能量转化率高,排放无污染的优势,是当前发展新能源汽车中重要的一类,而以氢气为燃料的质子交换膜燃料电池是目前应用于燃料电池汽车的唯一选择。对于车用燃料电池而言,为保证电池总功率稳定输出,燃料进气化学当量比需大于1,这样就使得尾气中仍含有一部分氢气残余,而氢气尾气的直接排放会加剧温室效应。目前燃料电池系统通常采用阳极封死或阳极循环的方式,正常工作状态下无尾气排出,同时阴极内氮气会慢慢渗透穿过质子交换膜到达阳极,尽管跨膜速率较慢,但阳极无尾气排放,这样就会造成阳极内氮气的逐渐累积。氮气的积累会逐渐稀释阳极内氢气的浓度,导致电池性能不断下降。因此,电池堆工作一定时间后,必须打开排气阀,用氢气吹扫出阳极内累积的氮气,使得电池性能恢复。适当的吹扫策略,既要使电池保持更长时间的高性能输出,提高燃料的能量转化率,也要减少燃料浪费,针对电池在各种电流密度下工作,应设定特定的吹扫策略,如何设计相应的吹扫策略至关重要。

[0003]本发明将设定氮气吹扫中存在的关键参数,设计不同工况下吹扫策略,制定衡量不同吹扫策略的优异性的参数,以达到设计出适合的吹扫策略的目的。发明内容

[0004]本发明的目的是,提出一种质子交换膜燃料电池阳极氮气吹扫策略的设计方法,并定义判断吹扫策略优劣性的指标,在不同电池运行工况下提供合适、优异的吹扫策略。[0005]质子交换膜燃料电池阳极氮气吹扫策略的设计方法,其扫气策略设计包括三项参数的选择:(1)不同电流密度下工作的扫气开始时刻;(2)扫气流速;(3)扫气最佳时长,利用电池堆排气阀吹扫阳极的氮气,通过比较能量利用率和燃料浪费率两项指标判定扫气策略的优异性。

[0006]设计的三项参数具体为:[0007](1)扫气开始时刻的设计是指,当燃料电池瞬时输出电压低于初始给定的电压峰值百分比的时刻,此时,电池堆排气阀完全打开,吹扫阳极内积累的氮气。[0008]具体来说,吹扫开始时刻由正常工作中电池输出电压衰减率决定,当质子交换膜燃料电池瞬时输出电压较工作过程中电压峰值下降给定百分比时刻,电池排气阀完全打开,吹扫阳极内积累的氮气,即设定开始吹扫的电压下降的百分比即为扫气开始时刻。[0009](2)扫气流速的设计是指:以阳极化学当量比确定扫气流速,吹扫所用的气体为干燥氢气,吹扫的阳极化学当量比不小于正常工作下的阳极化学当量比。[0010]电池在不同电流密度下的扫气由合适的扫气流速,扫气流速的设定通过阳极化学当量比ST给出,使得不同电流密度下应用特定的扫气流速。

3

CN 107946614 A[0011]

说 明 书

2/4页

(3)扫气最佳时长的设计是指:以扫气过程中电池电压恢复的指标来判定扫气最

佳时长,当扫气中燃料电池电压恢复或者接近峰值后,关闭电池堆排气阀,燃料电池返回正常工作状态,扫气过程结束。

[0012]以扫气过程中电压恢复判定扫气最佳时长,阳极内累积的氮气被氢气吹扫排出,电压快速升高,当扫气中电压达到峰值后,立即关闭排气阀,电池返回正常工作状态,扫气过程结束。所以定义从开始扫气至电压恢复峰值的时间为扫气最佳时长。[0013]为衡量扫气策略的优劣性,本发明定义规定燃料电池吹扫中的能量利用率和燃料浪费率两项指标。

[0014]从燃料电池开始正常工作,电压衰减,开始扫气至扫气结束整个过程中,能量利用率是指燃料电池所产生电能与氢气总消耗量的低位热值之比;燃料浪费率是指扫气中阳极出口排出氢气量与整个过程氢气总消耗量之比。[0015]能量利用率为从燃料电池开始正常工作,电压衰减,开始扫气至扫气结束整个过程中,燃料电池所产生电能与氢气总消耗量的低位热值之比。其计算公式如下:

[0016]

[0017]

燃料浪费率为从燃料电池开始正常工作,电压衰减,开始扫气至扫气结束整个过程中,扫气中阳极出口排出氢气量与整个过程氢气总消耗量之比。其计算公式如下:

[0018]

[0019]

其中ηηI为输出电流密度,V(t)为每一时刻energy为能量利用率,waste为燃料浪费率,

为正常工作与扫气整个过程产生的电能,F为法拉第常数,Aact为电池活为整个过程中电化学反应消耗的氢气量,

为吹扫中排出的氢气量,

为扫气过程中出口氢气通

为氢气低位热值。

输出电压,化面积,

量,Aout为流道出口面积,

[0020]

通过比较能量利用率和燃料浪费率,衡量扫气策略的优劣性。能力利用率越高,燃料浪费率越低,则扫气策略越优秀。

[0021]本发明的特点及产生的有益效果是:[0022]质子交换膜燃料电池工作中间歇性吹扫掉阳极中的氮气,可以保证电池高性能工作,只有针对不同工况提出对应的吹扫策略,才能达到既使电池维持高性能工作、提高燃料能量转化效率,又可减少氢气排放的目的。设定间歇吹扫策略,是燃料电池系统设计中必须着重考虑的环节。本发明提出氮气吹扫策略中的关键参数-扫气开始时刻,扫气流速和扫气最佳时长,可根据电池运行工况进行设计吹扫方案;又定义了衡量吹扫策略优劣性的指标-能量利用率和燃料浪费率,通过计算比较多种吹扫策略,根据实际需求选取最优吹扫方案,

4

CN 107946614 A

说 明 书

3/4页

达到提升电池性能,减少燃料浪费的目的。

附图说明

[0023]图1为电流密度为1.0A cm-2,扫气开始时刻为电压衰减10%时开始扫气,扫气流速为ST=2,扫气时长为3s,输出电压随时间变化关系。[0024]图2为燃料电池工作电流密度为1.0A/cm2,多种扫气策略下的扫气最佳时长。[0025]图3为燃料电池工作电流密度为1.0A/cm2,多种扫气策略下的能量利用率对比。[0026]图4为燃料电池工作电流密度为1.0A/cm2,多种扫气策略下的燃料浪费率对比。[0027]图5为燃料电池工作电流密度为0.7A/cm2,1.0A/cm2,1.3A/cm2时,吹扫流速设定为ST=1.5,不同开始吹扫时刻下的能量利用率对比。[0028]图6为燃料电池工作电流密度为0.7A/cm2,1.0A/cm2,1.3A/cm2时,吹扫流速设定为ST=1.5,不同开始吹扫时刻下的燃料浪费率对比。[0029]图7为燃料电池工作电流密度为0.7A/cm2,1.0A/cm2,1.3A/cm2时,电压衰减8%时开始吹扫,不同吹扫流速下的能量利用率对比。

[0030]图8为燃料电池工作电流密度为0.7A/cm2,1.0A/cm2,1.3A/cm2时,电压衰减8%时开始吹扫,不同吹扫流速下的燃料浪费率对比。具体实施方式

[0031]下面通过实施例计算并结合具体参数,对本发明的设计原理与应用进行详细的说明,说明书附图给出了实施效果。[0032]电池工作状况如下:电池分别以0.7A/cm2,1.0A/cm2,1.3A/cm2三种输出下工作,正常工作下氢气供给化学当量比ST=1.2。

[0033]1.质子交换膜燃料电池阳极氮气吹扫策略的设计,包括三项参数的选择:(1)不同电流密度下工作的扫气开始时刻;(2)扫气流速;(3)扫气最佳时长。[0034]2.扫气开始时刻的设定,当燃料电池瞬时输出电压低于初始给定的电压峰值3%,5%,8%,10%的时刻,电池堆排气阀完全打开,吹扫阳极内积累的氮气。[0035]3.扫气流速设定为氢气供给化学当量比ST为:1.2,1.3,1.5,2,3.

[0036]4.扫气最佳时长设定为当扫气中燃料电池电压恢复或者接近峰值后,关闭电池堆排气阀,燃料电池返回正常工作状态,扫气过程结束。[0037]5.以上述的一种扫气方案为例,计算扫气的能量利用率和燃料浪费率[0038]电流密度为1.0A cm-2,扫气开始时刻为电压衰减10%时开始扫气,扫气流速为ST=2,扫气最佳时长需根据实际情况确定,先将扫气时长暂设定为3s。图1为该扫气方案下输出电压随时间变化关系,可以看出,扫气的3s中,电压先恢复但随后会有所下降,1.2s时电压达到峰值,根据本发明扫气策略设计,扫气最佳时长为1.2s。扫气前正常工作时间为727.02s,扫气至扫气最佳时长1.2s,整个过程总时长728.22s,该过程产生电能1812.86J,电化学反应消耗的氢气量

为0.00754749mol,1.2s内排出的氢气量

5

CN 107946614 A

说 明 书

为6.11×10-6mol,氢气低位热值

4/4页

可求得能量利用率

η燃料浪费率ηenergy=51.55%,waste=0.081%。

[0039]按上述具体实施例,可计算各种工况,各种扫气方案的能量利用率和燃料浪费率。根据比较各项参数,衡量各种扫气策略的优异性,进一步说明本发明的应用和实施效果。[0040]图2、3和4为按以上工况和扫气策略,扫气最佳时长,能量利用率和燃料浪费率。[0041]扫气最佳时长主要取决于吹扫流速,吹扫流速越大,电池恢复至电压峰值的时间越短;另一方面,开始吹扫时刻的电压衰减幅度越大,最佳的吹扫时长也会有所增加。[0042]从不同开始扫气时刻角度比较,当电池电压衰减幅度较小就开始扫气,即扫气较频繁,电池更长时间处于高电压输出,尽管频繁扫气会增加燃料浪费率,造成更多的燃料浪费,但依然能获得较高的能量利用率;而电压衰减大幅度才开始扫气,即扫气间隔较长,虽然燃料浪费率低,但电池处于低性能工作时间延长,导致能量利用率较低。[0043]从不同吹扫流速比较,当吹扫间隔较小(3%、5%)时,吹扫流速为ST=1.2的燃料浪费率最低,燃料浪费率随吹扫流速增长而增加;当吹扫间隔较小(8%、10%)时,吹扫流速为ST=1.3的燃料浪费率最低,吹扫流速更高会增加燃料浪费率,吹扫流速更低不仅增加扫气时间,燃料浪费率也会略有增加。吹扫流速则对能量利用率的影响不大。[0044]图5、6为燃料电池工作电流密度为0.7A/cm2,1.0A/cm2,1.3A/cm2时,吹扫流速设定为ST=1.5,不同开始吹扫时刻下的能量利用率和燃料浪费率的比较。能量利用率随电流密度增加而降低。在多种开始吹扫时刻下,低电流密度下燃料浪费率总是高于高电流密度,因此设定电压恢复至峰值为扫气最佳时长的策略更适合于高电流密度。低电流密度下频繁吹扫会大幅增加燃料浪费率,更适合采用较长的吹扫间隔;高电流密度下,长吹扫间隔对减少燃料浪费的效果则没那么显著,且能量利用率会有所下降,可根据实际需求选择开始吹扫时刻。

[0045]图7、8为燃料电池工作电流密度为0.7A/cm2,1.0A/cm2,1.3A/cm2时,电压衰减8%时开始吹扫,不同吹扫流速下的能量利用率和燃料浪费率的比较。同上述分析,由图8多电流密度下燃料浪费率所示,设定电压恢复至峰值为扫气最佳时长的策略更适合于高电流密度。0.7A/cm2下取得最低燃料浪费率的吹扫流速为ST=1.5,1.0A/cm2下取得最低燃料浪费率的吹扫流速为ST=1.3,1.3A/cm2下取得最低燃料浪费率的吹扫流速为ST=1.2,因此对于不同电流密度下扫气,电流密度越高,吹扫流速以化学当量比设定的值适宜越低。[0046]根据以上过程对各种参数设定下的扫气策略进行分析,再结合实际情况中对扫气时长,能量利用率和燃料利用率的要求,选出所需工况下最佳的扫气策略。

6

CN 107946614 A

说 明 书 附 图

1/4页

图1

图2

7

CN 107946614 A

说 明 书 附 图

2/4页

图3

图4

8

CN 107946614 A

说 明 书 附 图

3/4页

图5

图6

9

CN 107946614 A

说 明 书 附 图

4/4页

图7

图8

10

因篇幅问题不能全部显示,请点此查看更多更全内容