Generator
G.D.Mahan,J.O.Sofo[*],andM.BartkowiakDepartmentofPhysicsandAstronomy
UniversityofTennessee,Knoxville,TN,37996-1200,and
SolidStateDivision
OakRidgeNationalLaboratoryOakRidge,TN37831-6030
February1,2008
Abstract
Anewmethodofrefrigerationisproposed.Coolingisobtainedbytherm-ionicemissionofelectronsoverperiodicbarriersinamultilayergeometry.ThesecouldbeeitherSchottkybarriersbetweenmetalsandsemiconduc-torsorelsebarriersinasemiconductorsuperlattice.Thesamedeviceisanefficientpowergenerator.Acompletetheoryisprovided.
1
Anewmethodisproposedforrefrigerationandpowergeneration.Thedevicesarecomposedofmultilayersofperiodicbarriers.Thecurrentsareperpendiculartothebarriers.Suchdevicesarepresentlyunderconsiderationforthermoelectriccoolingandpowergeneration.Hereweproposethatthesamedevicescanbeusedforefficientthermioniccooling,orpowergeneration.Whatisthedifferencebetweenathermoelectricdevice[1,2]andatherm-ionicone[3,10]?Theirdescriptionsareremarkablysimilar.Inbothcasesoneputsatemperaturegradientonasemiconductor.Bothdevicesarebasedupontheideathatelectronmotioniselectricity.Buttheelectronmotionalsocarriesenergy.Forcingacurrenttransportsenergyforboththermionicandthermoelectricdevice.Thebasicdifferenceseemstobewhetherthecurrentflowisballisticordiffusive.Inthermionicmotion,thedevicehasrelativelyhighefficiencyiftheelectronsballisticallygooverandacrossthebarrier.Theycarryalloftheirkineticenergyfromoneelectrodetotheother.Inthermoelectricdevices,themotionofelectronsisquasiequilibriumanddiffusive.OnecandescribetheenergytransportbyaSeebeckcoefficient,whichisanequilibriumparameter.Therehavealsobeenrecenttheoriesofnonequilibriumthermoelectriceffects[11].Theyseemtobemidwaybetweenthethermionic(ballistic)andthermoelectic(quasiequilibrium)regimes.Wenotethatmanysemiconductorsuperlattices,withshortperiods,arebeingmade[12]andmeasuredalongthec-axis.Theseperiodsaresoshortthatelectronmotionoverthebarrierisprobablyballistic.Wesuggestthatthesedevicescoolbythermioniceffectsratherthanthermoelectricones.
Earlierwesuggested[3]thatthermionicdevicescouldbeusedasrefrig-erators.Fortheusualdeviceoftwometalplatesseparatedbyanairgap,coolingatroomtemperaturerequiresalowworkfunction.Nometalshavevaluesthatlow(φ∼0.3eV).Numerousgroupshavesuggested[4]-[10]thatsuchsmallbarriersareeasilyattainableinsemiconductorsystems.Herethebarriersaresemiconductors,whiletheelectrodescouldbeeithermetalsorothersemiconductors.Weconsideredthisgeometryinouroriginalpaper,butthoughtthatthethermalconductivityofthesolidwouldbeamajorobstacle.Hereweshowthatthethermaleffectscanbedealtwithbygoingtoamultilayergeometry.Weshowthatsuchdeviceshaveefficiencieswhichcouldbetwicethoseofthermoelectricones.
Thephysicsbehindthermioniccoolingissimple.Mostphysicistsarefamiliarwiththetechniqueofcoolingliquidhelium-4bypumpingthevaporfromthecryostat.Themostenergeticheliumatomsleavetheliquidand
2
becomegasmolecules.Pumpingthemawayremovestheseenergeticatoms,therebycoolingtheliquid.Inthermionicrefrigeration,oneusesavoltagetosweepawaythemostenergeticelectronsfromthesurfaceofaconductor.Thoseelectronswithsufficientenergytoovercometheworkfunctionaretakenawaytothehotsideofthejunction.Removingtheenergeticelectronsfromthecoldsidecoolsit.Chargeneutralityismaintainedatthecoldsidebyaddingelectronsadiabaticallythroughanohmiccontact.
Thermionicdevicesmusthavetheelectronsballisticallytraversethebar-rierinordertohaveahighefficiency.Thisrequiresthatthemean-free-pathλoftheelectroninthebarrierbelongerthanthewidthLofthebarrier.ThisconstrainsthebarrierwidthLtoberathersmall.Thisfactisakeyfeatureoftheanalysis.Thegeneralconstraintsare
λ>L>LtLt=
h¯
eφ
(1)
R1=2RI+
R1
L
Ke
(3)(4)
Thefirsttermintheenergycurrentistheelectronpartfromthermionicemis-sion.Itisgivenbelow.Thesecondtermisthephononpart,whichcontainsthethermalresistanceR1foronebarrier.Thethermalresistancedependsuponthethickness(Le)andthermalconductivity(Ke)oftheelectrodes,aswellastwointerface(’Kapitza’)termsRI[13,14].Thelargesttermwillusu-allybeL/Kforthesemiconductorbarrier.TheproblemisthatLissmallwhichmakesR1smallwhichmakesδT/R1big.Thisistheproblemwiththe
3
thermalconductivity.ItcanbeovercomebyhavingδTbesmall.Thisisthereasonforthemultilayergeometry.EachbarriercansupportonlyasmalltemperaturedifferenceδTi.Amacroscopictemperature∆TisobtainedbyhavingNlayerssothat∆T=NδTi.MostofourmodelingassumesthatδTihasanaveragevalueof1-2◦C.Belowweshowthatadequatecoolingpowerisavailableforthesevalues.
1
1.1
Refrigeration
SingleBarrier
ThefirststepinthederivationistosolveforthecurrentsoverasinglebarrierofwidthL.Weassumethebarrierisaconstantatzeroappliedvoltage,whichmeansithasasquareshape.AtanonzerovoltageδVthebarrierhastheshapeofatrapezoid.Theformulasfortheelectrical(J)andheat(JQ)currentsaregivenintermsofthehotandcoldtemperatures(Th,Tc)[3]
JRj=ATj2e−eφ/kBTjA=
2emkB
(5)
R1
δT=Th−Tc
(8)(9)
Theseequationsareforasinglebarrier.Eqn.(5)isthestandardRichardson’sequation[15]forthethermioniccurrentoveraworkfunctioneφwhichinthiscaseistheSchottkybarrierheightbetweenthemetalandsemiconductor.Alternately,itisthebarrierinasemiconductorquantumwell.ThefactorofTdenotesthefractionofelectronstransmittedfromthemetaltothesemiconductor.Itiscalculatedusingquantummechanicalmatchingofthewavefunctions.TheformulasforJandJQassumethebiaseδVistolowertheFermilevelonthehotside,sothatthenetflowofelectronsisfromcoldtohot.
Forelectronsthechargeeisnegativewhichmakesφ,Jalsonegative.Wefindthisconfusingtotreat,sowetakeeandφaspositiveasifthesystem
4
wereaholeconductor.ThenJ>0forparticleflowtotheright,whichweareassuming.
WeshowthatforasinglelayertheoptimalvalueofappliedbiaseδV∝δTwhichisalsosmall.DenoteasTthemeantemperatureofthelayer,andthenTc=T−δT/2,Th=T+δT/2.Thenweexpandtheaboveformulasforthecurrentsinthesmallquantities(δT/T,eδV/kBT)andfind,aftersomealgebra
J=
eJR
kBT
eVJ=kBδT[b+2]eVQ=kBδTqq=b+2+u
2+Z
u=
kBR1JR
ekB2π2h¯3
=Z0eb
T
2
(12)(13)
(14)(15)
(17)(18)
Z0=(kBTR)
2
=
=
δVJ
kBT(b+2)
δV(δV−VJ)5
(20)(21)
WenowvaryδVintheaboveequationtofindthevalueofδV=Vmwhichgivesthemaximumefficiencyηmwhichis
Vm=VQ+
ηˆ(φ)=
δTηˆ
b+2q+
√(23)
theelectronballisticallycrossesthebarrierregion,andthenlosesanamountofenergyeδViintheelectrode.Theheatgeneratedateachelectrodemustflowoutofthesampleaccordingtotheequation
d
Li
(25)
whereLiistheeffectivewidthoneonebarrierplusonemetalelectrode.WetakeLitobeaconstant,althoughitcouldvarywithi.ThewidthofthedeviceisD=NLi.Innormalusagetherewouldbeanegativesignontheright-handsideofthisequation.ItisabsentsincewechangedthesignofJ.ThefunctionschangeslowlywithiandwetreatthemascontinuousvariablesδTi/Li=dT/dxandδVi/Li=dV/dx.ThevariationofδViuponiisunknown,butweguessthatitisproportionaltoδTi.Introducethedimensionlessfunctionv(x)
eδVi=kBδTiv
δTi
J=JR
(26)
uJR
I=dx
=
Iu
(29)
ITyZ
RN
e
=NR1.
RN(32)(33)
ThevariableI(x)isintroducedineqn.(29,30).Aftertryingvariousalterna-tives,wedecideditistheconvenientvariableforthepresentproblem.Theparameteryisadimensionlesscurrent.Eventuallywevarythisparametertofindtheoptimalefficiency.Thethermalresistanceoftheentiredeviceis
7
denotedasRN.Itsvalueisirrelevantsinceitocursinywhichisavariationalparameter.Useeqn.(29)toevaluateδViin(26)andthisresultisinsertedintoeqn.(25)
JQc
=JQ=dx
(I)=dx
=
J∆J
VkBTc
J(φ+2kBT
−yZyITZ
iZ(Ti)
eN
Ti
(37)
comparabletothethermionicresultswhenTR=500K.ThusonewantstooperatethethermionicdevicewithvaluesofTRlessthan500K.
ThefactorofTRisdeterminedbythethermalresistivity.Reducingthethermalresistivitybyafactorof25onlyreducestheefficiencybyafactorof5.ThustheefficiencyscaleswithTRratherthanwithR1.Thisisquitedifferentthaninthermoelectricdevices,wheretheresultisalmostdirectlyproportionaltothethermalresistivity.Noteineqn.(35)thatZentersintheformulainthecombinationofZ/(2+Z)whichsaturatesatlargevaluesofZ.TheincreaseisZ0isoffsetbyalowervalueofbarrierheightφ.
Theexactresultsshowthatthethermionicrefrigeratorhasabout30%oftheidealCarnotefficiency∆T/TcforvaluesofTR=200-300K.OurcalculationsshowthattheefficiencyslowlydeclineswithincreasingvaluesofTR.ThevalueofφwherethemaximumefficiencyoccursalsodeclineswithincreasingvalueofTR.
2MultilayerThermionicPowerGeneration
Powergenerationcanbeunderstoodbyconsideringasimpledevicewithonebarrierbetweentwoelectrodes.Iftheelectrodesareatdifferenttempera-tures,andifthereisnoinitialvoltagebetweentheelectrodes,thenelectronsarethermallyexcitedoverthebarrier.Anetelectronflowgoesfromhottocold.Iftheelectrodesareinsulated,thentheelectrodesbecomechargedandthesystemdevelopsanopencircuitvoltage,whichopposestheflowofelectronsandreducesittozero.Connectingtheelectrodestoanexternalcircuitcausescurrenttoflow.Powercanbeextractedfromthedevice.Thebehaviorisidenticalinconcepttoasolarcell.Heretheefficiencyiscalcu-latedusingtheusualdefinition:itistheexternalpowerJ∆VdividedbytheheatextractedfromthehotelectrodeJQh.
2.1OneBarrier
Againthebarriersareassumedtobethinnerthanthemean-free-pathoftheelectrons,sothatonecanapplytheformulasofthermionicemission.ThereisasmalltemperaturedropδTandvoltagedropδVacrossthebarrier.The
9
efficiencyofasinglebarrierusingeqns.(10)–(14)is
η=
e
δV−VQ
(40)
ThevoltageδVisvariedtofindthevalueδVmwhichgivesthemaximumefficiencyηm
δVm=ηm=
KBδTδT
q(√
u)
(41)
(eφ+2kBTh)(1−Ih)
(43)
Theseequationsweresolvedonthecomputer.WeassumedthatTc=300KandTh=400K,sothat∆T=100K.Figure3showstheefficiencyasafunctionofbarrierheightforseveralvaluesofTR.Thisshouldbecomparedwithathermoelectricgeneratorwhichhasanefficiencyofη=0.048forthesameoperatingtemperatures.ClearlythethermionicdeviceismoreefficientforsmallvaluesofTR.Figure4showsthetemperatureandδViprofilesalongthethermionicdevice,assumingthatN=100.
10
3ThermoelectricAnalogy
Thermionicdevicesarenotthermoelectricdevices.However,itisusefultoexaminetheanalogybetweenthetwokindsofdevices.Oncewelinearizetheeqns.(10,11,25)forsmallvoltagedrops,andthenmakethemcontinuousinamultilayergeometry,theybecomeidenticalinformtotheequationsofathermoelectric.Thisanalogygivestheeffectiveformulasfortheconductivityσ,theSeebeckcoefficientS,andthethermalconductivityK.
σ=
eJRLi
(45)(46)(47)
(b+2)ekB
K=[]Li
R1
σS2T
Z=
u
ThefirstterminthethermalconductivityistheelectroniccontributionKe.NotethatitobeysamodifiedWiedemann-FranzLaw
Ke=σT
kB
Z0
=
2mkBR1
∆T(γ+1)11
(50)
∆T(γ−1)ηg=
1+Z
(52)
areremarkablyaccuratecomparedtothecomputersolutions.TheEqs.(50)and(51)estimatethecorrectefficiencywithanaccuracyofabout1%.Theseformulasprovideanalyticalestimatesoftheefficiency.Onecanalsousethethermoelectricanalogytofindthecurrentdensitiesatmaximumefficiencyaswellasotherparameters.
InthermoelectricdevicesitishighlydesirablebutratherraretohavevaluesofZ>1.However,inmodelingthermionicdeviceswefindvaluesofZfectivemuchSeebecklargerthancoefficientoneforinreasonableeqn.(45)isvaluesaboutof250-300thermalµV/Kresistance.sincevaluesTheef-ofbarebetweenoneandtwo.Byusingthelowvaluesofthermalconductivityreportedalongthec-axisofasuperlattice,weestimatethatTR=200-400K.ForthisrangeofparameterstheeffectivedimensionlessfigureofmeritZisbetween2and5.Theefficienciesofthethermionicdevicesarecorrespond-inglymuchhigherthaninthermoelectricdevices.Ballistictransportcarriesmoreheatthandiffusiveflow.
4Discussion
Adetailedtheoryispresentedofthepropertiesofamultilayerthermionicrefrigeratorandpowergenerator.Itisshownsthatifthethermalresistanceishigh,thatthedevicescanbetwicetheefficiencyoftheequivalentther-moelectricdevices.Thevaluesofthermalresistiviityneededtomakethemworkwellareintherangeofreportedvaluesformultiplequantumwells.Itappearsthesedevicesarepractical.
OneoftheinterestingquestionsistoselectthevalueofN.Thisdeter-minesthenumberofmultilayers.Aslongasthisnumberislargerthanaboutteninrefrigerators,itdoesnotchangetheefficiency.ThechoiceofNmayaffectthethermalresistance.Forafixedtemperaturedrop∆T,thevalueofNaffectstheaveragetemperaturedropperlayerδT=∆T/N.Thecoolingpoweristheenergycurrentfromthecoldside.Anestimateis
JAT
¯φ∆TQc=
¯istheaveragetemperatureofthedevice.ForarefrigeratortakeAwhereT
¯=280K,φ=0.050eV,andδT=1K.=120A/(cm2K2)alongwithT
ThentheresultisJQc=212W/cm2.Thisisalargecoolingpower.Thushavingasmalltemperaturedroppermitsamplecooling.Itdoesrequireasmallbarrierheight.Incidently,thenumericalsolutionsallowanaccuratecalculationofJQcandtheaboveformulaisanunderestimatebyaboutafactoroftwoorthree.OnecouldincreaseNbyafactoroftenandstillhaveamplecoolingpower.ThemanufacturingcostswoulddependonN.Anotherissueismechanicalstrength.Athickerdevice(largerN)isstronger.Thustherearetradeoffsbetweencoolingpower,manufacturingcosts,andmechanicalstrength.Suchengineeringissuesarebeyondthescopeofthepresentdiscussion.
WethankL.Woodsforhelpfuldiscussions.Researchsupportisacknowl-edgedfromtheUniversityofTennessee,andfromOakRidgeNationalLab-oratorymanagedbyLockheedMartinEnergyResearchCorp.fortheU.S.DepartmentofEnergyundercontractDE-AC05-96OR22464.
Appendix
Hereweexaminethetransportofelectricityandheatusingthedrift-diffusioneqn.(1).Wewillshowthattheamountofheatisnegligiblysmallwhenoneusesthisequation.Unlessthelayerthicknessisintheregimewherethermionicemissionisvalid,thesemiconductorbarrierdoesnottransportsignificantamountsofheat.
Weconsiderasquarebarrierforthesemiconductor.AssumethereisasmallappliedpotentialandasmalltemperaturedifferenceδT=Th−Tc.Thentheformulaforthecurrentshouldbe
J=eµn
δV
L
(54)(55)(56)(57)
n(0)=n0e−eφ/kBTcn(L)=n0e−eφ/kBTh
n=n0e−eφ/kBT
WeexpandthedensityexponentsusingTh,c=T±δT/2andfind
J=
eµn
VD=bkBδT(59)
Theaboveformularesembleseqn.(10).ThetwoconstantvoltagesVJandVDaresimilar.Theprefactorsareverydifferent.Denotebyrtheratioofthetwoprefactors,whichgivestheratioofthemagnitudesofthecurrentspredictedbydrift-diffusioncomparedtothecurrentspredictedbythermionicemission
r=
σ0
eµn
L0
(62)
2π2h¯3
whereσistheconductivityofthesemiconductorandL0isacharacteristic
lengthwhichwetaketobeonemicron.Atroomtemperaturewefindthatσ0=8.1kS/m.InSbhasamobilityof8m2/(Vs)atn=1020/m3forσ=130S/m.Evenforb=4thispredictsaratioofr≈10−3.Sothecurrentduetodrift-diffusionisonethousandtimessmallerthanthecurrentduetothermionicemission.Theenergycurrentshavethesameratioofproportionality.Thustheflowofheatisnegligiblewhenthethicknessofthesemiconductorisgreaterthanthemeanfreepathoftheelectron,sothattheparticlesdiffuse.
14
References
[*]FellowofCONICET,Argentina.PermanentAddress:InstitutoBalseiro
andCentroAt´omicoBariloche,(8400)BarilocheRN,Argentina.[1]G.Mahan,B.SalesandJ.Sharp,PhysicsToday,(March1997)pg42[2]G.D.Mahan,SolidStatePhysics51,ed.H.EhrenreichandF.Spaepen(AcademicPress,1998)pg81[3]G.D.Mahan,J.Appl.Phys.76,4362(1994)
[4]D.M.RoweandG.Min,Proc.13thInt.Conf.Thermoelectrics,1994,
pg339[5]V.N.Bogomolov,D.A.Kurduykov,A.V.Prokofiev,Yu.I.Ravich,
L.A.SamoilovichandS.M.Samoilovich,Proc.14thInt.Conf.Thermo-electrics1995[6]B.Moyzhes,Proc.15thInt.Conf.Thermoelectrics,1996,pg183[7]G.Kainz(unpublished)[8]Y.Nishio(unpublished)
[9]A.ShakouriandJ.E.Bowers,Appl.Phys.Lett.71,1234(1997)[10]A.Shakouri,E.Y.Lee,D.L.Smith,V.NarayanamurtiandJ.E.Bowers,
MicroscaleThermophysicalEngineering(inpress)[11]V.S.ZakordonetsandG.N.Logvinov,SovietPhysics-Semic.31,265
(1997)[12]R.VenkatasubramanianandT.Colpitts,inThermoelectricMaterials–
NewDirectionsandApproaches,ed.T.M.Hicks,M.G.Kanatzidis,H.B.LyonsJr,andG.D.Mahan(MRS,Vol.478,1997)pg73[13]E.T.SchwarzandR.O.Pohl,Appl.Phys.Lett.51,2200(1987)[14]E.T.SchwartzandR.O.Pohl,Rev.Mod.Phys.61,605(89)
[15]S.M.Sze,ThePhysicsofSemiconductorDevices2nded.(Wiley,1981)
15
[16]G.Springholz,G.Ihninger,G.Bauer,M.M.Olver,J.Z.Pastalan,S.
RomaineandB.B.Goldberg,Appl.Phys.Lett.63,2908(1993)[17]X.Y.Yu,G.Chen,A.VermaandJ.S.Smith,Appl.Phys.Lett.67,3554
(1995)[18]G.Chen,DSC-Vol.59,MicroelectromechanicalSystems(MEMS),pg13
(ASME,1996)[19]W.S.CapinskiandH.J.Maris,PhysicaB219&220,699(1996)[20]S.M.Lee,D.G.CahillandR.Venkatasubramanian,Appl.Phys.Lett.
70,2957(1997)[21]P.HyldgaardandG.D.Mahan,Phys.Rev.B56,10754(1997)[22]K.Kajiyama,M.MizushimaandS.Sakata,Appl.Phys.Lett.23,458
(1973)[23]L.LerachandH.Albrecht,Surf.Sci.78,531(1978)
[24]L.D.Hicks,T.C.Harman,X.Sun,andM.S.Dresselhaus,Phys.Rev.B
53,R10493(1996)
16
FigureCaptions
1.ThereductionintheCarnotefficiencyηˆforasinglebarrierasafunctionofbarrierheightφforvaluesofTR=100,200,300,400,and500K.2.EfficiencyηofamultilayerthermionicrefrigeratorwithTc=260KandTh=300K.ResultsareplottedasafunctionofbarrierheightfordifferentvaluesofTR.3.Exactefficiencyofamultilayerthermionicpowergeneratorasafunc-tionofbarrierheightφforseveralvaluesofTR.WeassumedTc=300KandTh=400K.4.ChangeinthetemperatureTiandvoltageViasafunctionofpositionalongthemultilayerpowergenerator.WeassumedthatTc=300K,Th=400K,φ=0.054V,andTR=200K.
17
420400380360340320300280
0
20
40
Ti
i
6080100
0.30.280.260.240.220.20.180.16
0
20
40
dVi
i
6080100
0.5
TR=100K
0.4
η
0.3
200K
300K
0.2
0.1
500K
00
0.02
0.04
0.06
φ
0.08(eV)
0.10.12
0.12
η
0.1
TR=200K
300K400K
0.08
0.06
500K0.04
0.02
00
0.02
0.04
0.06
0.08
φ(eV)
0.10.120.14
3
2.5
TR=100K
η
2
1.5
300K
1
500K
0.5
200K
00
0.02
0.04
0.06
0.08
φ(eV)
0.10.120.14
因篇幅问题不能全部显示,请点此查看更多更全内容