您的当前位置:首页正文

lenin2015

2020-12-27 来源:个人技术集锦
Epub ahead of print June 29, 2015 - doi:10.1189/jlb.3A1214-609R

Article

Alteredimmunometabolismattheinterfaceofincreasedendoplasmicreticulum(ER)stressinpatientswithtype2diabetes

RajiLenin,AravindSankaramoorthy,ViswanathanMohan,andMuthuswamyBalasubramanyam1DepartmentofCellandMolecularBiology,MadrasDiabetesResearchFoundationandDr.Mohan’sDiabetesSpecialtiesCentre,

Gopalapuram,Chennai,India

RECEIVEDDECEMBER17,2014;REVISEDAPRIL30,2015;ACCEPTEDMAY26,2015.DOI:10.1189/jlb.3A1214-609R

ABSTRACT

ThemechanismofperturbedimmunefunctioninpatientswithT2DMispoorlyunderstood.RecentstudiesimplyaroleforERstressinlinkingimmune-systemalterationsandmetabolism.Here,weinvestigatedwhetherER

stressmarkersanditsdownstreameffectorsignalsarealteredinpatientswithtype2diabetesalongwith

proinflammatoryaugmentation.Inourstudy,geneandproteinexpressionofERstressmarkers(GRP-78,PERK,IRE1a,ATF6,XBP-1andCHOP)waselevatedsignificantly(P,0.05)inPBMCsfromT2DMpatientscomparedwithcontrolsubjects.ThemRNAexpressionofboththeproinflammatorycytokines(TNF-aandIL-6)andoxidativestressmarkers(p22phox,TXNIP,and

TRPC-6;P,0.05)wasalsoincreasedinPBMCsfrompatientswithT2DM.SOCS3mRNAexpressionwasreducedsignificantly(P,0.05)indiabetespatients.mRNAexpressionofmostoftheERstressmarkersfromPBMCscorrelatedsignificantlyandpositivelywith

poorglycemiccontrol,dyslipidemia,IR,andinflamma-toryandoxidativestressmarkers.ChronicERstressinPBMCsfrompatientswithT2DMwasevidentfrom

theincreasedcaspase-3activity(P,0.01),whichisanexecutionerofapoptosis.AlongwithanimpairmentofmiR-146alevels,thedownstreamtargetsofmiR-146a,viz.,IRAK1andTRAF6mRNAlevels,werealso

elevatedsignificantly(P,0.01)inpatientswithT2DM.TherewasaninverserelationshipamongmiR-146alevelsandERstressmarkers,inflammatorymarkers,andglycemiccontrol.WedemonstrateevidenceofincreasedERstressmarkerswithimpairedmiR-146alevelsandincreasedproinflammatorysignalsinpatientswithtype2diabetes.J.Leukoc.Biol.98:000–000;2015.

Introduction

Althoughtheinvolvementofstress-activatedsignalingpathwaysinthedevelopmentofdiabeticcomplicationsiswellknown,recentstudiesimplythatseveralcellularstressmechanismsconverge,eveninthegenesisoftype2diabetes,andare

accountablefortheinsulin-secretoryandinsulin-actiondefects.ThereisincreasingevidenceinsupportofaroleforERstressinmodulatinginsulinsecretionandinsulinsensitivityinvitroandinvivo[1,2].UnderERstressconditions,severalprosurvivalmechanismsareactivatedbyUPR,whichprotectsthecellbytranslationalattenuation,inductionofchaperonesynthesis,andER-associatedproteindegradation.WhenERstressisnotmitigated,andhomeostasisisnotrestored,theUPRtriggersapoptosis[3].AlthoughIRisthehallmarkoftype2diabetes,thereisnowaconsensusthatimpairedglucoseregulationcannotdevelopwithoutinsulindeficiency.Itappearsthattype2diabetesdevelopsonthebasisofnormalbut\"weak\"bcells,unabletocopewithexcessivefunctionaldemandsimposedbyIR.Thissuggeststhatatleastinitially,thebcelldysfunctionoftype2diabetescouldbemorefunctionalthanstructural.AsianIndianswithmilddysglycemiahavebeenshownrecentlytoexhibitreducedbcellfunction,regardlessofage,adiposity,insulinsensitivity,orfamilyhistory[4].Withtheconsiderationofthisandtheplausiblebcellapoptosisintype2diabeteswithprolongedhyperglycemia/hyperlipidemia,thestudyingofERstressmechanismsmeritsattention.

TheinterplayofUPR/ERstresswithinflammation,glucose/lipidmetabolism,andenergy-controlpathwaysunderlieschronic,metabolicdiseases,includingtype2diabetes[5–7].Whereasstress-signalingpathwayshavebeenwellstudiedinpreclinicalmodels,thereisanimperativeneedtostudytheinterconnectivityofthesesignalingalterationsintheclinicaldiabetessetting.WiththeuseofsystemicmarkersandPBMCsasasurrogatecellmodel,severalofourstudiesdemonstratedtheincreasedproinflamma-tionandoxidativestressinpatientswithtype2diabetesanditscomplications[8–14].Wehavealsoshownimpairmentofan\"immunomiR\"(miR-146a)thatlinksproinflammationandIRin

1.Correspondence:Dept.ofCellandMolecularBiology,MadrasDiabetesResearchFoundation,Gopalapuram,Chennai600086,India.E-mail:diasignal@gmail.com;Twitter:http://www.twitter.com/DMDSC

Abbreviations:ATF6=activatingtranscriptionfactor6,BCL-2=Bcelllymphoma2,BMI=bodymassindex,CHOP=CCAAT/enhancer-bindinghomologousprotein,Ct=cyclethreshold,ER=endoplasmicreticulum,FPG=fastingplasmaglucose,GRP-78=glucose-regulatedprotein78,HBA1c=hemoglobinA1c,HOMA=

homeostasismodelassessment,hsa=Homosapiens,IR=insulinresistance,IRAK1=IL-1R-associatedkinase1,IRE1a=inositolrequiringenzyme1a,

(continuedonnextpage)

0741-5400/15/0098-0001©SocietyforLeukocyteBiologyVolume98,October2015

JournalofLeukocyteBiology1

Copyright 2015 by The Society for Leukocyte Biology.

patientswithtype2diabetes[15].WhereasacceleratinginterestintheroleofERinmetabolicdiseasehasbeenfueledbyrecentreportsshowingpathwaysthatlinkERtoinflammation[5,16],thereislackofstudiesontheseaspectsinAsianIndianswhoaremoreinsulinresistantandmorepronetodeveloptype2diabetesandcardiovasculardiseases[17].AstheremightbeatightinterconnectivityandoverlappingregulationbetweenERstressandinflammation,weplannedtoinvestigatetheextentofERstressinPBMCsinpatientswithT2DMcomparedwithcontrolsubjectsandtoanalyzetheirrelationshipwithinflammatorymarkersandglycemic/lipidcontrol.Furthermore,wewantedtocheckwhethersuchstresssignalsshowanyassociationwith

impairmentofanimmunomiR(theupstreamregulatorysignal)inpatientswithtype2diabetes.

MATERIALSANDMETHODS

Subjectrecruitment

ThestudysubjectswererecruitedrandomlyfromtheongoingepidemiologycohortsandfromDr.Mohan’sDiabetesSpecialtiesCentre,atertiarydiabetescenterinChennai,SouthIndia.Studygroupscomprisedof1)subjectswithNGT(n=35)and2)patientswithT2DM(n=35),basedonWorldHealthOrganizationcriteriaforthediagnosisofdiabetes[18].Institutionalethicalcommitteeapprovalwasobtainedforthestudy,informedconsentwas

obtainedfromallofthestudysubjects,andthestudywasconductedaspertheDeclarationofHelsinki.FastingbloodsampleswerecollectedinEDTAtubesandwerehandledseparatelyforbiochemicalandmolecularinvestigations.Agene-expressionpatternofERstressandinflammation/oxidativestressmarkerswasprobedinallofthestudysubjects.ProteinexpressionofERstressmarkers,miR-146alevels,itsgenetargets(IRAK1andTRAF6),andcaspase-3activitywasstudiedinasubsetof(n=15each)ofsubjectswithNGTandpatientswithT2DM.

Anthropometricmeasurements

Height,weight,andbloodpressureweremeasuredbyuseofstandardizedmethods.BMIwascalculatedasweight(kg)/height(m2).IRwascalculatedbyHOMA-IRwithuseofthefollowingformula:fastinginsulin(mIU/ml)3fastingglucose(mmol/l)/22.5.

Biochemicalparameters

BiochemicalanalysesweredoneonanHitachi912autoanalyzer(Mannheim,Germany)byuseofkitssuppliedbyRocheDiagnostics(Mannheim,Germany).Fastingplasmaglucose(glucoseoxidase-peroxidasemethod),serumcholesterol(cholesteroloxidase-PAPmethod),serumtriglycerides(triglycerides-PAPmethod),andHDLcholesterol(directmethod–

polyethyleneglycol-pretreatedenzymes)weremeasured.LDLcholesterolwascalculatedbyuseoftheFriedewaldformula.Glycatedhemoglobin(HbA1c)wasestimatedbyhigh-pressureliquidchromatographybyuseoftheVariantmachine(Bio-RadLaboratories,Hercules,CA,USA).

(continuedfrompreviouspage)

LNA=lockednucleicacid,miR-146a=microRNA146a,miRNA=microRNA,NGT=normalglucosetolerance,p22phox=NADPHoxidase,PAP=phenolplusaminophenazone,PBMC=peripheralbloodmononuclearcells,PERK=proteinkinaseR-likeendoplasmicreticulumkinase,pNA=p-nitroanilide,snRNA=smallnuclearRNA,SOCS3=suppressorofcytokinesignaling3,SUMO=smallubiquitinmodifier,T2DM=type2diabetesmellitus,TRAF6=TNFR-associatedfactor6,TRPC-6=transientreceptorpotentialchannel6,TXNIP=thioredoxin-interactingprotein,UPR=unfoldedproteinresponse,XBP-1s=Xbox-bindingprotein1spliced,XBP-1u=Xbox-bindingprotein1unspliced

2JournalofLeukocyteBiologyVolume98,October2015PBMCisolation

Freshlycollectedperipheralbloodwascarefullylayeredonhistopaque

gradient(1077)andcentrifugedat1600rpm(500g)for30min.Thebuffy-coatinterface,representing.90%lymphocytes,wasaspiratedandwashed3timesinPBS(withpH7.4)andaliquotedforvariousexperiments.

RNAisolationandreal-timePCR

TotalRNAfromcellswasisolatedasdescribedpreviously[15].TheRNAqualityandconcentrationoftotalRNAweremeasuredbyuseofnanodrop.RNA(1mg)wasconvertedtocDNAbyuseof100unitsRTenzyme,40mMOligo(d)T18primer(NewEnglandBiolabs,Ipswich,MA,USA),103RTbuffer,20URNaseinhibitor(AmershamBiosciences,Piscataway,NJ,USA),and2.5mMeachdNTPSandincubatedat42°Cfor1h.Quantitativereal-timePCRwasperformedforspecificgenesbyuseofSYBRGreenmastermix(Finnzymes,Woburn,MA,USA).PCRamplificationwascarriedoutbyuseofABI-7000(AppliedBiosystems,FosterCity,CA,USA)withcycleconditions(initialcycle,50°Cfor2min;initialdenaturation,95°Cfor15min,40cyclesofdenaturation95°Cfor15s,andannealing/extensionof60°Cfor1min).TheexpressionlevelofRNAwasdeterminedbyuseof22DDCtandnormalizedbyuseofb-actin.TheprimersequencesofspecificgenesareinTable1.

Proteinexpression

Cellswerelysedbyuseofradioimmunoprecipitationassaybuffer[50mMTris-HCl(pH8.0),150mMNaCl,0.1%SDS,0.2%sodiumazide,1%TritonX-100,0.25%sodiumdeoxycholate,and13proteaseinhibitor].Inbrief,cellswere

TABLE1.Primersequencesofspecificgenes

Name

Sequence

ReferenceGRP-78ForwardCTG[19]PERKReverseForwardTTACCATGGTTCTCACTAAAATG

GAAGGCCAGCAATAGTTCCAG

[19]IRE1aReverseForwardGGAGCGTGACCACACGACCAAGATGGAGAGACCACAG

GAG

[19]XBP-1uReverseForwardACCTGGAGCAACAGAATACACCATCAC

ATTCCACTGTCACCATTG

[19]XBP-1sReverseForwardTCCTGCTTCTGATGGGTCGTAGCGGTATTGAC

CGCGACAGCCTCTG

[20]ATF6ReverseForwardGCTCCTGGCGTCCTAAGGCAACTCAGTTGGACCGGAAGGAG

TG

[19]CHOPReverseForwardCCTGTATTACCTATCATGTCGTTTCCTCACCTAATGACCAG

C

[19]TRPC-6ReverseForwardTGGTTTAATGAGGAGCTGGGCGAGAGAAGTCTCGAGCTGGG

G

[19]TNF-aReverseForwardTATCCCGGCAGGCCTGGAACAACAGCTCTTCAGCCT

AAA

[15]IL-6ReverseForwardTCAGACGCTAGCCCACAGCACCGCTCAGATCAT

TCACATCCTT

[15]SOCS3ReverseForwardTGTTTTCTGCCAGTGCC

CTT

[15]TXNIPReverseForwardGCGTCGATTCGGGACCAGC

[15]p22phoxReverseForwardGCCCCAGGACATGCCAACTTGCTGT

CAGAACTCAAGAGACA

[19]IRAK1ReverseForwardGTCTTCACAATGACCTCCTACCAGGAATGAACATCATTCTGGTACTTTGG

CGCTGTCCCCAG

[15]TRAF6ReverseForwardGGGTGCAGGGATGCT

ACCT

ReverseGCCATGAAAAGATGCAGAGGAATC

[15]b-ActinForwardTGAACAG

TCGGGTATAACGCTCAAACTAReverseCGTGTCCGCTTCCCACCCCATTCCAGGATCAAT

GT

[19]

www.jleukbio.org

Leninetal.DualburdenofERstressandinflammationindiabetics

sonicatedandincubatedfor1hiniceandcentrifugedat16,000gfor5minat4°C.ThesupernatantcollectedwasquantifiedforproteinbytheBradfordmethod.Proteins(15mg)wereresolvedona10%SDS-PAGEandtransferredtopolyvinylidinefluoridemembranes.After1hblockingin5%BSAandincubationwiththeappropriateprimaryantibodiesandHRP–conjugatedsecondaryantibodies,detectionwasperformedbyuseofanECLkit(GEHealthcare,Pittsburgh,PA,USA).b-Actinwasusedasaninternalcontrol.MeandensitometrydatafromindependentexperimentswerenormalizedtocontrolbyuseofImageJsoftwareandrepresentedastheratiooftestproteinandb-actin.

miR-146aexpressionandquantitativereal-timePCR

First-strandcDNAwassynthesizedfrom10ngofthetotalRNAbyuseofafirst-strandcDNAsynthesiskitandmiRNA-specificRTprimersetsfortargetmiRNA(hsa-miR-146a)andendogenouscontrolU6snRNA(hsa;Exiqon,Woburn,MA,USA).cDNAsynthesiswascarriedat50°Cfor30minand85°Cfor5min.cDNAsynthesisfortheanalysisoftargetgenes(mRNA)wasperformedwith40unitsRTenzyme,40mMOligo(d)T18primer(NewEnglandBiolabs),103RTbuffer,and20URNaseinhibitor(AmershamBiosciences),and2.5mMeachdNTPSandprimersofspecificgeneswasincubatedat42°Cfor1handheatinactivationofenzymedoneat85°Cfor10min.Quantitativereal-timePCRwasperformedbyuseofthemercuryLNAmiRNAPCRsystemandSYBRGreenmastermixandwithLNA-basedprimersetsfortargetmiRNAs(hsa-miR-146a)andU6snRNA(Exiqon).cDNAwasdiluted1:10withnuclease-freewater,asperthemanufacturer’sinstruction,and4mleachcDNAwasusedforquantitativereal-timePCRinanABI-7000machine(AppliedBiosystems)withappropriatecycleconditions.The

expressionlevelofmiRNAwasdeterminedbyuseof22DDCtandnormalizedtoU6snRNA.Forreal-timemeasurementofmRNAs,SYBRGreenJumpStartReadyMix(Sigma-Aldrich,St.Louis,MO,USA)wasusedforexpressionlevelofb-actinandrespectivetargetgenes.TheexpressionlevelofmRNAwasdeterminedbyuseof22DDCtandnormalizedtob-actin.

Caspase-3activityassay

Caspase-3activitywasdeterminedbycolorimetricassaybyuseofthecaspase-specific,peptide-containingaminoacidsequenceAsp-Glu-Val-AspthatisconjugatedtothecolorreportermoleculepNA(R&DSystems,Minneapolis,MN,USA).Thecleavageofthepeptidebythecaspasesreleasesthe

chromophorepNA,whichisquantifiedspectrophotometricallyat405nm.Cellsharvestedaftertreatmentwerelysed,and10mgproteinwasaliquotedfromeachsampleintoa96wellplate.DTT(0.5ml)wasaddedtoallofthewells,followedbyadditionof50ml23reactionbufferand3.5mlCaspase-3colorimetricsubstrate.Theplatewasincubatedat37°Cfor1handreadat405nmbyuseofamicroplatereader.Caspase-3activitywasexpressedasmean6SEofOD.

Statisticalanalysis

AllanalysesweredonebyuseofWindows-basedStatisticalPackagefor

SocialSciences(SPSS,Version16.0;Chicago,IL,USA).Datawereexpressedeitherasmeans6SDormeans6SE.ComparisonsbetweengroupswereperformedbyuseofunpairedStudent’st-test.Pearsoncorrelationanalysiswascarriedouttodeterminetherelationofgene-expressionsignatureswithotherriskvariables.Logisticregressionanalysiswasusedtodeterminetheassociationofindependentmolecularsignatures.P,0.05wasconsideredstatisticallysignificant.

RESULTS

Table2presentstheclinicalandbiochemicalcharacteristicsofthestudysubjects.TherewerenosignificantdifferencesinageandBMIbetweenthestudygroups.Fastingplasmaglucose(P=0.014),glycatedhemoglobin(HbA1c;P=0.001),HOMA-IR(P=0.002),totalcholesterol(P=0.005),serumtriglycerides

www.jleukbio.orgTABLE2.ClinicalcharacteristicsofthestudygroupsParameter

NGTSubjects(n=with35)T2DMPatients(nwith=35)ValuePAge,Gender,yr

44.76647.3670.175BMI,kg/mM:F2ratioFPG,23.917/1824.619/160.196HbA1c,mg/dl0.014HOMA-IR

%5.577662615157620.001Total0.002Serumcholesterol,1401.760.45.437.866790.005HDLtriglycerides,mg/dl12060.676374617261.515862.71638790.013LDLcholesterol,cholesterol,mg/dlmg/dl

mg/dl10841667.931

12237665.234

0.0240.011

Valuesaremeans6

SD.

(P=0.013),andLDLcholesterol(P=0.011)weresignificantlyhigherinpatientswithT2DMcomparedwithsubjectswithNGT.HDLcholesterol(P=0.024)wassignificantlylowerinpatientswithtype2diabetescomparedwithsubjectswithNGT.

TranscriptionalanalysisrevealedthatthegeneexpressionofERstressmarkers(GRP-78,XBP-1u,XBP-1s,PERK,IRE1a,ATF6,andCHOP)waselevatedsignificantlyinPBMCsfromT2DMcomparedwithcontrolsubjects(Fig.1).ThemRNAexpressionofboththeproinflammatorycytokines(TNF-aandIL-6)andoxidativestressmarkers(p22phox,TXNIP,andTRPC-6)wasalsoincreasedinPBMCsfrompatientswithT2DMcomparedwithcontrolsubjects(Fig.2).Interestingly,themRNAexpressionofSOCS3wasseenreducedinPBMCsfromT2DMcomparedwithNGT(Fig.2).Table3illustratesthePearsoncorrelationanalysisofERstressgeneswithotherclinicalandbiochemical/molecularvariablesinthestudy.Interestingly,mRNAexpressionofmostoftheERstressmarkersfromPBMCssignificantlyandpositivelycorrelatedwithpoorglycemiccontrol,dyslipidemia,IR,andinflammatoryandoxidativestressmarkers(Table3).LogisticregressionwasperformedbyuseofdiabetesasthedependentvariableandtheERstressmarkersastheindependentvariable(Table4).ExpressionlevelsofGRP-78(b,1.04,P,0.001),PERK(b,1.05,P=0.010),IRE1a(b,1.02,P,0.001),ATF6(b,1.03,P,0.001),XBP-1u(b,1.04,P,0.001),XBP-1s(b,1.02,P,0.002),

Figure1.Relativegene-expression(mean6SE)dataofERstress

markers,viz.,GRP-78,XBP-1u,XBP-1s,PERK,ATF6,IRE1a,andCHOP.*P,0.05comparedwithNGT;**P,0.01comparedwithNGT.

Volume98,October2015

JournalofLeukocyteBiology3

stressandinflammationasafunctionofcaspase-3activity.

Caspase-3activitywasalsoincreasedsignificantlyinPBMCsfromT2DMcomparedwithNGT(Fig.4C).Interestingly,themiR-146alevelswerenegativelycorrelatedtofastingplasmaglucose,HBA1c,IR,triglycerides,aswellasproinflammatory/oxidativegenemarkersandcaspase-3activity(Table5).

DISCUSSION

Ourstudypresentsthefollowingclinicallyrelevantfindings.1)DifferentarmsoftheERstressmarkers(bothatthegeneandproteinlevels)wereincreasedinPBMCsfrompatientswithtype2diabetesandcorrelatepositivelywithglycemicandlipidlevels,IR,andinflammatoryandoxidativestressmarkers.2)Forthefirst-time,wehaveshowninterconnectivitybetweendecreasedmiR-146alevelsandERstress/proinflammationinpatientswithtype2diabetes.3)OurstudyalsodemonstratesERstress

susceptible,proinflammatory,andproapoptoticphenotypesofPBMCsinpatientswithtype2diabetes,asisevidentfrom

increasedcaspase-3activityandTRPC-6genesignatures,alongwiththeotherstress-signalingalterations.

EmergingdatashowthatoneofthecentralelementsintheactivationofinflammatorypathwaysisERstress[5,21].Thismolecularpathwayisshowntointerferewiththefunctionofthemajorinsulintargettissues—hypothalamus,liver,adiposetissues,muscle,andthepancreaticbcells[22].Particularly,secretorycells,suchaspancreaticbcellsandadipocytes,facethechallengeofincreasingproteinsynthesis,severalfoldsduringacuteorchronicglucolipotoxicstresses.MonocyteshavebeenshownvulnerableandfunctionallyimpairedunderERstressinpatientswithtype2diabetes[23].Sageetal.[24],havealsoshownthatcomparedwithhealthycontrols,individualswithmetabolicsyndromehadelevatedmRNAlevelsofgenesindicativeofERstress.ConsistentwiththeliteratureinthattheIRE1a–XBP-1pathwayisanearlytriggerofUPR[5],wesawtranscriptionalup-regulationofIRE1aandXBP-1(bothXBP-1uandXBP-1s)in

Figure2.Relativegene-expression(mean6SE)dataofinflammatory/oxidativestressmarkers,viz.,TNF-a,IL-6,SOCS3,TXNIP,p22phox,andTRPC-6.*P,0.05comparedwithNGT;**P,0.01comparedwithNGT.

andCHOP(b,1.03,P=0.042)showedsignificantassociationwithtype2diabetesevenafteradjustingforage.However,thisstatisticalsignificancewaslostwhenthedataareadjustedforTNF-aandIL-6.Thisimpliesatightsignalingcross-talkandinterconnectivitybetweenproinflammationandERstressintype2diabetes.

ConsistentwiththemRNAresults,therewasalsoan

augmentedproteinexpressionofERstressmarkers(GRP-78,XBP-1,PERK,IRE1a,andCHOP)inPBMCsfromT2DMcomparedwithNGT(Fig.3).AsourearlierstudiesrevealedalinkbetweenimpairedmiR-146aandproinflammationintype2diabetes[15],wealsoprobedtheexpressionlevelsofmiR-146inthisstudy.ThemiR-146aexpressionlevelsweredecreasedsignificantly(P,0.001)inpatientswithtype2diabetes

comparedwithNGT(Fig.4A).Wenextexaminedtheexpressionof2confirmedgenetargetsofmiR-146a,viz.,IRAK1andTRAF6,andfoundbothofthemincreasedsignificantlyinT2DM

comparedwithNGT(Fig.4B).Ascaspase-3activationisanearlymarkerofapoptosis,wealsoestimatedthechronicburdenofER

TABLE3.Pearsoncorrelation(r)ofERstressgeneswithothervariablesinthestudyGRP-78

VariableBMIFPGHbA1cHOMA-IRCHOLESTRIGLYHDLLDLTNF-aIL-6SOCS3TXNIPp22phoxTRPC-6

r0.0860.4170.5520.3960.2240.2120.2510.1940.4730.2660.3760.2970.3280.481

P0.5290.0020.0010.0060.1260.1270.050.160.0010.1800.0400.1290.0360.011

r0.0810.4950.5310.5750.1440.30820.3600.3780.2700.3890.2360.2010.4610.401

XBP-1u

P0.5880.0170.0010.0020.3870.0390.0110.0110.2200.1460.1030.1270.0100.028

r0.2140.4730.1590.3400.1650.37820.3190.4280.4700.2060.3200.1390.4120.319

XBP-1s

P0.1960.0200.1300.0180.1400.0430.0120.0260.0120.1040.0230.0850.0320.016

r0.1850.2010.3010.1390.5680.43420.1410.3020.2400.2630.2400.2670.2290.281

ATF6

P0.2080.1160.0380.1100.0010.0020.3270.0440.1770.2150.2180.1220.1290.124

r0.0210.5120.3700.2320.3990.34220.1240.2090.3990.3660.2190.2660.4100.213

IRE1a

P0.8850.0090.010.1310.010.0190.3810.1680.0200.0240.1590.1960.0190.112

r0.1870.3170.3830.3930.5260.42120.2380.2880.5270.5300.2540.3780.4260.434

CHOP

P0.2090.1040.0080.0200.0010.0030.1010.0550.0120.0210.1960.0430.0210.022

CHOLES,cholesterol;TRIGLY,triglycerides.

4JournalofLeukocyteBiologyVolume98,October2015www.jleukbio.org

Leninetal.DualburdenofERstressandinflammationindiabetics

TABLE4.AssociationregressionofERstress(bwith)analysis

diabetesbyuseoflogistic

Unadjusted

AdjustedforageforAdjustedTNF-aAdjustedforIL-6VariablebPbPbPbPGRP-78XBP-1u1.040.0012.67XBP-1s1.040.0011.061.060.9901.06PERK1.020.0021.040.0041.030.0021.050.0671.040.070ATF61.051.490.0591.030.0750.071IRE11.030.0101.040.0011.650.9951.200.997CHOP

a1.020.0021.030.0081.03

0.0010.042

1.020.0011.05

0.0020.090

1.020.9900.0541.07

0.0631.020.322

1.011.17

0.1450.990

PBMCsfrompatientswithtype2diabetes.Inarecentstudy,ERstressmarkersIRE1a,GRP-78,andXBP-1swereshowntobeincreasedsignificantlyinadiposetissueofobese,pregnantwomenandwomenwithgestationaldiabetesmellitus[25].AsXBP-1sactivitycanbemodulatedbypost-translationalmodifica-tions,includingSUMOylation[26]andacetylation/deacetylation[27],thephysiologicandpathologicrelevanceoftheseregula-toryeventsinthecontextofmetabolicdiseaseswarrantsfurtherstudies.Importantly,ourstudynotonlyobservedincreasedmRNAandproteinlevelsofERstressmarkersinPBMCsfrompatientswithtype2diabetesbutalsodemonstratedthe

associationofthesesignatureswithproinflammatorymarkers,poorglycemiccontrol,andIR.TheexpressionofERstress

markershasbeenfoundtobeincreasedsignificantlyinhumanisletcellsfromtype2diabetessubjects,ascharacterizedbyincreasedexpressionandnucleartranslocationofCHOP[28].Postmortemstudiesalsoreporteda30–60%decreaseinbcellmassintype2diabetes[29–32]asaresultofincreasedapoptosis[29].WorkingwithMIN6bcells,isletsisolatedfromdb/dbmice,aswellaspancreassectionsofhumanswithtype2

diabetes,Laybuttetal.[33]haveshownERstresscontributingtobcellapoptosisintype2diabetes.Interestingly,Asian

Indianswithmilddysglycemia(prediabetes)havebeenshownrecentlytoexhibitreducedbcellfunctionregardlessofage,adiposity,insulinsensitivity,orfamilyhistory[4].AlthoughweusedPBMCsasasurrogatecellmodel,ourstudyimpliesaroleofincreasedERstressandproapoptoticsignalingthatis

reflectiveofslowbcelldeteriorationinthenaturalhistoryoftype2diabetes.

InadditiontotheIRE1a-andPERK-dependentUPRapoptoticpathways,ERstresscaninitiateotherproapoptoticevents,includingrelocalizationofBCL-2familymembers,cleavageofER-specificcaspases,p53activation,anddisruptionofcellularcalciumhomeostasis[34,35].CHOPcouldbeanimportantplayerofERstress-mediatedbcelldeathandmaypromotetheprogressionoftype2diabetes[36].CHOPispositivelycontrolledbythePERK–ATF4axis,andCHOPhasbeenshowntopromotethetranscriptionofBCL-2-interactingmediatorandthedown-regulationofBCL-2expression,contributingtotheinductionofapoptosis[37].Inthiscontext,theincreasedCHOPgeneandtheproteinexpressionpatternseenintype2diabetespatientsinourstudyareimportantobservations.IncreasedTRPC-6mRNA

www.jleukbio.orgexpressioninPBMCsfrompatientswithtype2diabetesinourstudyimpliesaroleforincreasedcalciumlevelsinPBMC

dysfunctionandERstress.AlterationsinCa2+homeostasishavebeendemonstratedindiabetesandassociatedcomplications[38,39]andarelinkedtoERstress.LossofCa2+homeostasisasaresultofimproperTRPCactivationcouldleadtoERstressresponsesandevenapoptosis[40].AlthoughithasbeenknownthatactivationoftheCHOPpathwayoftheUPRcancauseapoptosis,themolecularmechanismslinkingCHOPtodeathexecutionpathwaysarepoorlyunderstood.OurresultshereshowthatapoptosismightbeexecutedbytheactivationofTRPC-6andsubsequentincreaseincytosolicCa2+loadandincreasedactivationofcaspase-3inPBMCsfrompatientswithtype2diabetes.

TheincreasedTNF-aandIL-6gene-expressionpatternsinT2DMobservedinourstudyimplythattheseproinflammatorysignalsareimportantcomponentsinthepathogenesisof

type2diabetes.WehavealsoobservedadecreaseintheSOCS3gene-expressionlevelsinT2DMcomparedwithNGT,whichisinaccordancewithourearlierstudy[13].ThephysiologicroleoftheSOCSproteinsismostlikelytopreventun-controlledcytokinesignalinginthecellbynegativefeedback.However,thismechanismseemstobecompromisedinglucose-intolerantsubjects,astheyexhibitlowlevelsofSOCS3,

despiteincreasedtranscriptionofTNF-aandIL-6.Itisclearfrominvitroandinvivostudiesthatchronicandevenacutehyperglycemiacanpromoteasignificantincreaseincirculatingbiomarkersofinflammation,includingIL-6andTNF-a,

whichplayaroleinalteringmetabolichomeostasis.Activated

Figure3.Representativeproteinblots(A)andcumulativedata(mean1SE)onproteinexpressionofERstressmarkers(B).*P,0.05comparedwithNGT;**P,0.01comparedwithNGT.

Volume98,October2015

JournalofLeukocyteBiology5

Figure4.GeneexpressionofmiR-146a(A),mRNAlevelsofIRAK1andTRAF6(B),andcaspase-3activity(C)inthestudysubjects.Valuesaremean1SE.*P,0.05comparedwithNGT;**P,0.01comparedwithNGT.

macrophagesthatproduceproinflammatorycytokines,suchasTNF-a,IL-1b,andIL-6,arethoughttocontributetoIRinmuscleandadiposetissues[17,41,42].Interestinglyinourstudy,proinflammationseeninpatientswithtype2diabetesislinkedtoERstressaswellasmiRNAregulation.WeshowedearlierimpairedmiR-146alevelstobelinkedtoproinflamma-tionandIRintype2diabetes[15].miR-146awasfoundtobeinducibleuponstimulationwithLPSinaNF-kB-dependentmannerandtotargettheTRAF6andIRAK1genes[43].Inourstudy,increasedERstressmarkersinpatientswithtype2diabeteswerenegativelycorrelatedtomiR-146alevelsandpositivelycorrelatedtomiRNAtargetgenesandproinflam-matorymarkers.AfewERstress-induciblemiRNAshavebeenidentifiedandshowntohindertranslationofvarioussecretorypathwayproteins[44,45],suggestingthatmiRNAsplay

integralrolesintheUPR.Althoughfurthermechanisticstudiesareneeded,ourresultssuggestthattheregulatorycircuitofmiR-146aregulationofinflammationhasbeenlostinpatientswithtype2diabetes,anditcouldhaveacausallinkoriginatingfromincreasedERstress.

Whereasithasbeenrecognizedthatinflammationplaysacentralroleintype2diabetes,ourresultsraisethe

possibilitythatERstressisattheintersectionofinflamma-tionandmetabolism.Overthepastseveralyears,this

concepthasbeensupportedbygenetic,experimental,andclinicalevidence[1,5,19,45].AcausalroleforATF5andmiR-17,mediatedbyTXNIP[46,47],hasbeendemonstratedtolinkERstressandinflammation,asthesemoleculesareregulatedbykeyregulatorsoftheERstressresponse,PERKandIRE1a.Inthepresentstudy,weobservedincreasedTXNIPgeneexpressioninpatientswithtype2diabetes,anditcorrelatedwellwiththedistalERstressmarkers,suchasCHOP.Oneofourearlierstudiesalsodelineatedaroleof6

increasedTXNIPgeneexpressionintype2diabetes,as

TXNIPgeneexpressionwaspositivelyassociatedwithproteinoxidationandgene-expressionpatternsofIL-6,TNF-a,andp22phoxinpatientswithtype2diabetes[13].Recently,

Iwasakietal.[16]havealsodescribedamolecularpathwaylinkingERtoIL-6production.WiththeuseofDNAmicroarrayandnetworkanalysesofmacrophages,they

showedcompellingevidencethatATF4,whichisinvolvedintheERstressresponse,playedanessentialroleinIL-6

expressioninducedbyvariousmetabolicstresses,includingERstress.

AlthoughweusedPBMCsasasurrogatecellmodel,ourstudyresultsofdoubleburdenofincreasedERstress(withproapoptoticsusceptibility)andproinflammationfrompatientswithtype2diabetescouldbeextrapolatedtotheunderlyingcausesofbcelldysfunction.Thisisimportant,becauseoftherecent

genome-wideassociationstudies,inwhichT2DMsusceptibilitygenesarerelatedtobcelldysfunctionandlossofbcellmass[48]andthefactthatbcelldysfunctionhasbeenevidenteveninyouth-onsettype2diabetes[49]andinsubjectswithprediabetes[4].Becauseofthecross-sectionalnatureofourwork,ourstudycouldnotrevealanycausalrelationshipbetweenERstressandtype2diabetes,andforthis,weneedprospectivefollow-upstudies.However,accumulatingliterature[50–52]givesdirec-tionality,inthatERstresstargetingwouldbebeneficialforprevention,aswellastreatmentstrategiesrelatedtotype2

diabetes.Asearlierinitiationofinsulintherapyintype2diabeteshasbeenshownrecentlytofacilitate“bcellrest,”andpreservebcellmassandfunction[53],furtherstudiesshoulddelineatewhetherthiscouldoccurbyreductionofERstress.

Toconclude,theinterconnectivitybetweenERstressandproinflammationinourstudy,alongwithdecreasedmiR-146alevelsinpatientswithtype2diabetes,isanewandunique

JournalofLeukocyteBiologyVolume98,October2015www.jleukbio.org

Leninetal.DualburdenofERstressandinflammationindiabetics

TABLE5.Associationstressmarkers,ofmiR-146aandinwithflammation

clinicalparameters,ER

miR-146a

GenesrValuePValueBMIFPG20.213HbA1c20.1450.012HOMA20.3430.011CHOLESIR20.4610.001TRIGLY20.5000.117HDL20.3010.012LDL20.4670.124GRP-7820.2510.227PERK20.1700.01ATF620.3890.006IRE120.4300.010XBP-1ua20.3120.147XBP-1s20.2290.047CHOP20.353TNF-20.3410.046IL-6a20.4090.012SOCS320.3620.014p22phox20.5710.003TXNIP20.1030.210TRPC-620.2960.010IRAK20.1320.127TRAF620.3010.041Caspase-3

20.2990.01520.3920.378

0.0230.047

observationofclinicalsignificance.Whereasananti-inflammatorystrategystillappearstobeanimportantcompo-nent,ourstudyexposesanupstreamroleofERstressand

miRNA-mediatedregulationattheintersectionofinflammationandmetabolismandpointsoutERstresspathwayasanattractivetargetforimmunometabolicdiseases,includingtype2diabetes.

AUTHORSHIP

M.B.designedthestudy,providedcriticalresearchmaterials,assistedwithanalysisoftheresults,andcomposedandeditedthemanuscript.V.M.assistedintheclinicalcharacterizationandeditedthemanuscript.R.L.andA.S.performedtheexperiments,analyzedthedata,andinterpretedtheresults.

ACKNOWLEDGMENTS

TheauthorsacknowledgegrantsupportfromtheDepartmentofBiotechnology(DBT)andIndianCouncilofMedicalResearch(ICMR),GovernmentofIndia,andtheseedmoneygrantfromMadrasDiabetesResearchFoundation(MDRF)IntramuralRe-searchFunding(MIRF).Theauthorsalsoacknowledgefinancialassistance(SeniorResearchFellowship)fromtheCouncilofScientificandIndustrialResearch(CSIR),NewDelhi,India.

DISCLOSURES

Theauthorsdeclarenoconflictofinterests.

www.jleukbio.orgREFERENCES

1.Ozcan,Tuncman,U.,EndoplasmicG.,Cao,reticulumG¨oQ.,rg¨uYilmaz,n,C.,E.,Lee,A.H.,Iwakoshi,N.N.,Ozdelen,E.,

stressGlimcher,linksobesity,L.H.,Hotamisligil,G.S.(2004)2.diabetes.insulinaction,andtype2Peter,Science306,457–461.

Stefan,A.,Weigert,C.,Staiger,H.,Machicao,F.,Schick,F.,Machann,J.,

stearoyl-CoAN.,Thamer,C.,H¨aring,H.U.,Schleicher,E.(2009)Individualstressskeletalandmuscleinfldesaturaseammation1lipidstorageinexpressionhumanmodulatesendoplasmicreticulumandinsulinmyotubessensitivityandisassociatedwith3.1757Hetz,–1765.

invivo.Diabetes58,4.decisionsC.(2012)Staimez,underTheERstressunfoldedandbeyond.proteinNat.response:controllingcellfate

J.reducedB.,Phillips,L.R.,Rev.Mol.CellBiol.13,89–102.L.Weber,M.B.,Ranjani,H.,Ali,M.K.,Echouffo-Tcheugui,

5.CareHotamisligil,36,2772b-cellS.,Mohan,V.,Narayan,K.M.(2013)Evidenceof

–2778.

functioninAsianIndianswithmilddysglycemia.Diabetes6.inBalasubramanyam,flammatoryG.basisS.(2010)ofEndoplasmicreticulumstressandthe

reticulumstressindiabetes:M.,metabolicLenin,disease.Cell140,900–917.

newR.,insightsMonickaraj,F.(2010)Endoplasmic

7.Clin.ofclinicalrelevance.IndianJ.SundarBiochem.25,111–118.

EndoplasmicRajan,reticulumS.,Srinivasan,(ER)V.,stressBalasubramanyam,&diabetes.IndianM.,J.Tatu,Med.U.(2007)

8.411Res.125,Sampathkumar,–424.

Mohan,(HbSSG)V.,inBalaram,R.,Balasubramanyam,type2diabetesP.(2005)M.,Sudarslal,S.,Rema,M.,

subjectsIncreasedwithmicroangiopathy.glutathionylatedhemoglobinClin.Biochem.9.38,Adaikalakoteswari,892–899.

(2006)A.,Balasubramanyam,M.,Rema,M.,Mohan,hemoxygenase-1DifferentialingenepatientsexpressionofNADPHoxidase(p22phox)V.

and10.Diabet.Adaikalakoteswari,Med.23,666–674.

withtype2diabetesandmicroangiopathy.(2007)polymerase/nuclearOxidativeDNAA.,Rema,damageM.,Mohan,V.,Balasubramanyam,M.

11.diabetesSrinivasan,andmicroangiopathy.factor-kappaandInt.BJ.signalingaugmentationBiochem.inCellpatientsofpoly(ADP-ribose)Biol.39,with1673type–1684.2Balasubramanyam,V.,Sandhya,N.,Sampathkumar,R.,Farooq,S.,Mohan,V.,

amidotransferasetype(GFAT)M.(2007)geneGlutamineexpressionfructose-6-phosphate

andactivityinpatientswith12.stress.2Gokulakrishnan,Clin.diabetes:Biochem.inter-relationshipssensitivityK.,40,withhyperglycaemiaandoxidativeDeepa,952–R.,957.

Mohan,V.(2008)Associationof(TNF-alpha)C-reactivedifferentgradeswithofcarotidprotein(hsCRP)andtumournecrosisfactor-alphahigh

glucoseintimalintolerancemedial—thicknessinsubjectswith13.EpidemiologyGokulakrishnan,Study(CURES-31).Clin.Biochem.theChennai41,480Urban–RuralBalasubramanyam,K.,revealedM.Mohanavalli,K.T.,Monickaraj,F.,Mohan,485.

V.,

glucosetolerancebyalteredandgene(2009)typeexpressionSubclinical2diabetesproinflammation/oxidationaspatients.filesinsubjectswithimpaired14.173Indulekha,–181.

Mol.Cell.Biochem.324,Balasubramanyam,K.,Surendar,levelsM.,Aravindhan,J.,Anjana,V.,R.M.,Mohan,Gokulakrishnan,V.(2012)CirculatingK.,

adiponectinofhigh15.inBalasubramanyam,flammationinmolecularinrelationweight(HMW)adiponectinandtotalAsianIndians.tofatdistribution,Dis.oxidativestressandSathishkumar,M.,Aravind,S.,Gokulakrishnan,Markers33,185–192.

K.,expressionlinksC.,Ranjani,H.,Mohan,V.(2011)ImpairedPrabu,miR-146aP.,

16.diabetes.Iwasaki,Tanaka,Y.,Mol.subclinicalinflammationandinsulinresistanceintype2Suganami,Cell.Biochem.T.,Hachiya,351,197R.,–205.

Ogawa,M.,Hamaguchi,M.,Takai-Igarashi,Shirakawa,T.,Nakai,I.,Kim-Saijo,M.,M.,

17.toY.(2014)Activatingtranscriptionfactor4linksmetabolicMiyamoto,stressY.,Sharp,interleukin-6InsulinP.S.,Mohan,expressionV.,Levy,inJ.macrophages.C.,Mather,H.DiabetesM.,Kohner,63,152E.–161.

M.(1987)

18.non-insulinresistanceinpatientsofAsianIndianandEuropeanoriginwithAlberti,classiK.G.,dependentdiabetes.Horm.Metab.Res.19,84–85.andclassificationZimmet,P.Z.(1998)Definition,diagnosisand

ficationofdiabetesmellitusanditscomplications.Part1:diagnosis19.consultation.Lenin,Balasubramanyam,R.,Maria,Diabet.ofdiabetesM.Med.S.,Agrawal,15,mellitus539–provisionalreportofaWHOM.,553.

Balasubramanyam,J.,endoplasmic20.1Vanmonocytes.reticulumM.(2012)Exp.DiabetesstressRes.byAmeliorationa“chemicalofchaperoneglucolipotoxicity-inducedMohan,V.,

”inhumanTHP-quantitativeSchadewijk,(XBP1)mRNAmethodA.,vanasameasurefor’tdetectionWout,2012,E.ofendoplasmicofF.,356487.

splicedStolk,J.,X-boxHiemstra,P.S.(2012)A

reticulumbinding(ER)protein-121.StressWellen,Chaperonesdiabetes.K.J.E.,Clin.Hotamisligil,17,275–279.

stress.CellInvest.115,G.1111S.–(2005)1119.

Inflammation,stress,and

Volume98,October2015

JournalofLeukocyteBiology7

22.Cnop,23.stress,Komura,obesityM.,Foufelle,anddiabetes.F.,Velloso,TrendsL.A.Mol.(2012)Med.Endoplasmic18,reticulum

S.under(2010)T.,CD14+Sakai,monocytesY.,Honda,areM.,Takamura,T.,Matsushima,59–68.

K.,Kaneko,

24.DiabetesendoplasmicSage,59,634–643.

reticulumstressvulnerableinpatientsandwithfunctionallytype2diabetes.impairedWerstuck,A.T.,areG.Holtby-Ottenhof,H.(2012)MetabolicS.,Shi,syndromeY.,Damjanovic,andS.,Sharma,A.M.,

25.cells.associatedLiong,Obesity(SilverwithendoplasmicSpring)20,748reticulum–755.

stressinacutehumanhyperglycemiamononuclearadiposeS.,tissueLappas,ofwomenM.(2015)withEndoplasmicgestationaldiabetes.reticulumPLoSstressONEisincreased10,in

26.e0122633.

Chen,27.activityH.,Wang,ofQi,XBP1.L.(2010)Biochem.SUMOmodificationregulatesthetranscriptional

proteinF.M.,Chen,Y.J.,Ouyang,J.429,95H.–102.

J.(2011)Regulationofunfolded

28.Biochem.responseHuang,Butler,polypeptideP.C.J.433,modulatorXBP1sbyacetylationanddeacetylation.C.J.,(2007)Lin,245C.–252.

HighY.,Haataja,expressionL.,Gurlo,ratesofT.,humanButler,A.E.,Rizza,R.A.,

apoptosis,acharacteristicinduceendoplasmicofhumansreticulumwithtypestress2butmediatedisletamyloidnottypebeta-cell29.DiabetesButler,P.A.56,E.,2016Janson,–2027.

1diabetes.J.,Bonner-Weir,S.,Ritzel,R.,Rizza,R.A.,30.typeC.Clark,2(2003)diabetes.b-Celldeficitandincreasedb-cellapoptosisinhumansButler,

withMatthews,A.,Wells,DiabetesC.A.,Buley,52,102I.–D.,110.

Cruickshank,J.K.,Vanhegan,R.amyloid,quantitativeincreasedD.R.,Cooper,a-cells,G.reducedJ.,Holman,R.R.,Turner,R.C.(1988)IsletI.,

31.151Kl¨–changesinthepancreasb-cellsintypeand2diabetes.exocrineDiabetesfibrosis:

Res.9,Isletoppel,159.G.,L¨ohr,M.,Habich,K.,Oberholzer,M.,Heitz,P.U.(1985)

32.mellituspathologySakuraba,revisited.andSurv.thepathogenesisSynth.Pathol.Res.oftype4,1101and–type2diabetesYagihashi,H.,stress-relatedS.(2002)Mizukami,ReducedH.,Yagihashi,b-cellmassN.,andWada,125.

R.,Hanyu,C.,

33.patients.Laybutt,DiabetologiaDNAdamage45,85–in96.

theisletofJapaneseexpressiontypeIIofdiabeticoxidativeBiankin,D.34.toXu,betacellA.V.,R.,Preston,A.M.,Akerfeldt,M.C.,Kench,J.G.,Busch,A.K.,

apoptosisBiden,T.inJ.type(2007)2diabetes.EndoplasmicDiabetologiareticulum50,752stress–contributes35.cellC.,Szegezdi,lifeBailly-Maitre,anddeathdecisions.B.,Reed,J.J.Clin.C.(2005)Endoplasmicreticulum763.

stress:

36.endoplasmicE.,Logue,S.E.,Gorman,A.Invest.M.,Samali,115,2656A.(2006)–2664.

Mediatorsof

Oyadomari,Mori,S.,reticulumKoizumi,stress-inducedA.,Takeda,K.,apoptosis.Gotoh,T.,EMBOAkira,Rep.7,880–885.endoplasmicM.(2002)reticulumTargetedstress-mediateddisruptionofdiabetes.theCHOPS.,Araki,E.,

J.Clin.geneInvest.delays37.525Tabas,–532.

109,38.inducedI.,Balasubramanyam,byRon,endoplasmicD.(2011)reticulumIntegratingstress.themechanismsofapoptosis

EvidenceforM.,Balaji,R.A.,Subashini,Nat.CellB.,Mohan,Biol.13,V.184(2001)

–190.39.diabetesZhu,mellitus.mechanisticInt.J.Exp.alterationsDiabetesRes.ofCa2+1,275homeostasis–287.

intype240.implicationsZ.,Luo,Yoshida,inZ.,metabolicMa,S.,Liu,diseases.D.(2011)PflTRPchannelsandtheir

(2006)DepletionI.,Monji,ofA.,intracellularTashiro,K.,Ca2+Nakamura,ugersArch.storeitselfK.,461,Inoue,211–maybeR.,223.

amajorKanba,factor

S.

8JournalofLeukocyteBiologyVolume98,October2015inInt.thapsigargin-inducedERstress41.

Kahn,48,Jones,S.696andapoptosisinPC12cells.Neurochem.E.,–Haffner,702.

S.M.,Heise,Viberti,N.P.,Kravitz,B.G.,Lachin,M.J.A.,M.,Herman,OW.H.,Holman,R.R.,rosiglitazone,G.;ADOPT’Neill,M.C.,Zinman,B.,2427metformin,StudyorGroup.glyburide(2006)monotherapy.GlycemicdurabilityN.Engl.J.of

Med.355,42.

Hotamisligil,–2443.

Spiegelman,G.S.,Peraldi,P.,Budavari,A.,tyrosine43.

resistance.kinaseB.activityM.(1996)Ellis,R.,White,M.F.,

inIRS-1-mediatedinhibitionofinsulinreceptorTaganov,kappaB-dependentK.ScienceD.,Boldin,271,665TNF-alpha-M.–668.

andobesity-inducedinsulinP.,Chang,K.targetedAcad.tosignalinginductionproteinsofofmicroRNAJ.,Baltimore,D.(2006)NF-innatemiR-146,aninhibitor44.

Bartoszewski,Sci.USAKapoor,proteinN.,Fuller,R.,103,immuneresponses.Proc.Natl.Brewer,12481C.,Collawn,J.–12486.

W.,Rab,J.F.,A.,Bebok,Crossman,Z.(2011)D.K.,TheBartoszewska,unfoldedS.,proteinresponsehuman45.immuneantigen1(XBP1)(UPR)-activatedtranscriptionfactorX-box-bindingpeptideinducesmicroRNA-346expressionthattargetstheBehrman,regulatory46.

microRNAS.,genes.transporterJ.Biol.Chem.1(TAP1)286,41862mRNA–41870.

andgovernsOslowski,controlsAcosta-Alvear,rhodopsinD.,expression.Walter,P.(2011)J.CellBiol.ACHOP-regulated192,919–927.Hara,Kaufman,M.,C.Ishigaki,M.,Hara,S.,Zhu,T.,O’Sullivan-Murphy,B.,Kanekura,K.,Lu,S.,proteinR.J.,Bortell,R.,Urano,L.J.,Hayashi,F.(2012)E.,Thioredoxin-interactingHui,S.T.,Greiner,D.,47.

inLerner,flammasome.mediatesCellERMetab.stress-induced16,265bcelldeaththroughinitiationoftheIgbaria,A.Greengard,A.,G.,Shen,Upton,J.P.,Praveen,–273.

P.V.,Ghosh,R.,Nakagawa,Y.,(2012)P.,Hui,S.,S.,Nguyen,Tang,V.,Q.,Backes,Trusina,B.J.,Heiman,M.,Heintz,N.,NLRP3IRE1A.,Oakes,S.A.,Papa,F.R.48.irremediableinflammasomeainducesthioredoxin-interactingandpromoteprogrammedproteincelltodeathactivateundertheSun,ERstress.CellMetab.16,250–264.

the49.

926713.

pathogenesisX.,Yu,W.,Hu,andC.its(2014)clinicalGeneticsapplication.oftypeBiomed2diabetes:Res.Int.insights2014,intoMohan,R.V.,Amutha,A.,Ranjani,H.,Unnikrishnan,R.,Datta,M.,Anjana,functionM.,Staimez,50.

prediabetesandTersey,amonginsulinL.,Ali,M.K.,Narayan,K.M.(2013)Associationsofb-cellAsianresistanceIndians.withDiabetesyouth-onsetTechnol.typeTher.2diabetes15,315–and322.Colvin,S.(2012)typeIsletS.A.,C.,Nishiki,Y.,Templin,A.T.,Cabrera,S.M.,Stull,N.D.,bEvans-Molina,-cellendoplasmicC.,Rickus,reticulumJ.L.,stressMaier,precedesB.,Mirmira,R.G.51.8181diabetesinthenonobesediabeticmousemodel.Diabetestheonset61,ofCao,–827.

52.inSun,metabolicS.S.,Kaufman,disease.R.ExpertJ.(2013)Opin.TargetingTher.Targetsendoplasmic17,reticulumstressmisfoldingJ.,Cui,J.,He,Q.,Chen,Z.,Arvan,P.,Liu,M.437(2015)–448.

Proinsulin53.

andOwens,progressionandendoplasmicofdiabetes.reticulumMol.AspectsstressMed.during42,105the–118.

developmenttherapyD.inR.type(2013)2diabetes.ClinicalDiabetesevidenceTechnol.fortheTher.earlier15,initiation776–785.

ofinsulinKEYWORDS:

UPR•

inflammation•

miR-146a•

PBMCs•

apoptosis

www.jleukbio.org

因篇幅问题不能全部显示,请点此查看更多更全内容