您的当前位置:首页正文

高中一年级数学一函数的性质知识点

2023-11-03 来源:个人技术集锦
高中一年级数学一函数的性质知识点

数学在现代生活生产中的应用专门广泛,查字典数学网为大伙儿举荐了高中一年级数学必修一函数的性质知识点,请大伙儿认真阅读,期望你喜爱。

函数的性质

1.函数的单调性(局部性质)(1)增函数

设函数y=f(x)的定义域为I,假如关于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1金太阳新课标资源网wx.jtyjy

f(x2),那么就说f(x)在那个区间上是减函数.区间D称为y=f(x)的单调 减区间.

注意:函数的单调性是函数的局部性质;(2)图象的特点

假如函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A)定义法:

1任取x1,x2∈D,且x1金太阳新课标资源网wx.jtyjy 3利用函数单调性的判定函数的最大(小)值:○

假如函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

假如函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);例题:

1.求下列函数的定义域:⑴yx2x15x332⑵y1(x1x12)2.设函数f(x)的定义域为[0,1],则函数f(x2)的定义域为__

3.若函数f(x1)的定义域为[2,3],则函数f(2x1)的定义域是4.函数 x2(x1)2,若f(x)3,则xf(x)x(1x2)2x(x2)2= 5.求下列函数的值域: ⑴yx22x3(xR)⑵yx2x3x[1,2] (3)yx12x(4)y6.已知函数 f(x1)x4x,求函数

2x4x52f(x),f(2x1)的解析式

7.已知函数f(x)满足2f(x)f(x)3x4,则f(x)=。8.设f(x)是R上的奇函数,且当x[0,)时,

f(x)x(13x),则当x(,0)时 f(x)=

f(x)在R上的解析式为9.求下列函数的单调区间:⑴yx22x3⑵y2x2x3⑶yx6x1

210.判定函数yx31的单调性并证明你的结论. 211.设函数f(x)1x判定它的奇偶性同时求证:f(1)f(x).

那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录同时阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。如此下去,除假期外,一年便能够积存40多则材料。假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?

21xx

“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”因此不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。

与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟专门貌,属句有

夙性,说字惊老师。”因此看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一样学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。现在体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。高中一年级数学必修一函数的性质知识点就介绍到那个地点,大伙儿认真阅读了吗?更多内容请关注查字典数学网。

因篇幅问题不能全部显示,请点此查看更多更全内容