福州市 2017-2018 学年第一学期九年级期末考试
数 学 试 卷
(满分:150 分;考试时间:120 分钟)
一、选择题(共 10 小题,每小题 4 分,满分 40 分;在每小题给出的四个选项中,只有 一项是符合题目要求的,请在答题卡的相应位置填涂) (1)一元二次方程 x2 3x 0 的解为
(A) x1 3 , x2 3
(C) x1 3 , x2 0
(B) x1 3 , x2 0 (D) x1 x2 3
(2)下列是中心对称图形但不.是轴对称图形的是
(A) (B) (C) (3)下列事件中,是随机事件的是
(A)任意画一个三角形,其内角和是 360° (B)任意抛掷一枚图钉,钉尖着地 (C)通常加热到 100℃时,水沸腾 (D)太阳从东方升起 (4)二次函数 y (x 1)2 2 图象的顶点坐标是
(A)(2, 1 ) (B)(2,1) (C)( 1 ,2)
(D)
(D)(1,2)
(5)下列图形中,正多边形内接于半径相等的圆,其中正多边形周长最大的是
(A) (B) (C) (D) (6)某医药厂两年前生产 1 t 某种药品的成本是 5 000 元,随着生产技术的进步,现在生
产 1 t 该种药品的成本是 3 000 元.设该种药品生产成本的年平均下降率为 x,则下 列所列方程正确的是 (A) 5 000 2(1 x) 3 000 (B) 5 000(1 x)2 3 000 (C) 5 000(1 2x) 3 000 (D) 5 000(1 x2 ) 3 000
(7)已知反比例函数 y k (k<0)的图象经过点 A( 1 ,y1),B(2,y2),C(3,y3),
x
则 y1,y2,y3 的大小关系是 (A)y2<y3<y1 (B)y3<y2<y1 (C)y1<y3<y2 (D)y1<y2<y3
九年级数学 — 1 — (共 4 页)
(8)如图,在 6×6 的正方形网格中,有 6 个点 M,N,O,P,Q,R
(除 R 外其余 5 个点均为格点),以 O 为圆心,OQ 为半径作圆, P 则在⊙O 外的点是
O (A)M
(B)N
M (C)P
Q N R (D)R
(9)如图,已知⊙P 与坐标轴交于点 A,O,B,点 C 在⊙P 上, y 且 ACO 60 ,若点 B 的坐标为(0,3),则 OA 的长为 C (A)2π B (B)3π
P(C) 3 π xO A (D)2 3 π (10)若二次函数 y ax2 bx c 的图象与 x 轴有两个交点 A 和 B, 顶点2 为 C,且 b 4ac 4,则∠ACB 的度数为 (A)30° (B)45° (C)60° (D)90° 二、填空题(共 6 小题,每小题 4 分,满分 24 分,请在答题卡的相应位置作答) (11)已知反比例函数的图象过点(2,3),则该函数的解析式为 .
(12)有长为 3,4,5,6 的四根细木条,从中任取三根为边组成三角形,则能构成直角
三角形的概率为 . (13)抛物线 y x2
4x 不经过第 .象限.
(14)我国古代数学著作《九章算术》中记载了一个问
C题:“今有邑方不知大小,各开中门,出北门三 D 750 西门 十步有木,出西门七百五十步见木,问:邑方几
何?”其大意是:如图,一座正方形城池,A 为 北门中点,从点 A 往正北方向走 30 步到 B 处有 一树木,C 为西门中点,从点 C 往正西方向走 750 步到 D 处正好看到 B 处的树木, 则正方形城池的边长为 步.
A
(15)在平面直角坐标系中,点 P 关于原点及点(0,-1)的对称点分别
为 A,B,则 AB 的长为 .
(16)如图,在△ABC 中,AB∶AC 7∶3,∠BAC 的平分线交 BC 于点 C
E,过点 B 作 AE 的垂线段,垂足为 D,则 AE∶ED . E
三、解答题(共 9 小题,满分 86 分,请在答题卡的相应位置作答) (17)(本小题满分 8 分) B D
解方程 x2 2x 1 0.
北门
30 A B (18)(本小题满分 8 分)
已知关于 x 的一元二次方程 x2 (2m 1)x m(m 1) 0,试说明不论实数 m 取何 值,方程总有实数根. (19)(本小题满分 8 分) 求证:相似三角形对应高的比等于相似比.
(请根据题意画出图形,写出已知,求证并证明)
九年级数学 — 2 — (共 4 页)
(20)(本小题满分 8 分)
某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压 p(单位:千 帕)随气体体积 V(单位:立方米)的变化而变化,p 随 V 的变化情况如下表所示.
… p 1.5 2 2.5 3 4 V 64 48 38.4 32 24 … (Ⅰ)请写出一个符合表格中数据的 p 关于 V 的函数解析式 ;
(Ⅱ)当气球内的气压大于 144 千帕时,气球将爆炸.依照(Ⅰ)中的函数解析
式,基于安全考虑,气球的体积至少为多少立方米?
(21)(本小题满分 8 分)
如图,△ABC 中,AB AC,∠BAC 50°,P 是 BC 边上一点, 将△ABP 绕点 A 逆时针旋转 50°,点 P 旋转后的对应点为 P′. (Ⅰ)画出旋转后的三角形; (Ⅱ)连接 PP′,若∠BAP 20°,求∠PP′C 的度数.
B P
C
A
(22)(本小题满分 10 分)
盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别.现让学生进行摸棋试验: 每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验后得到以下数据.
摸棋的次数 n 100 200 300 500 800 1000 摸到黑棋的次数 m 24 51 76 124 201 250 m (精确到 摸到黑棋的频率 0.001) 0.240 0.255 0.253 0.248 0.251 0.250 n (Ⅰ)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是 ;(精确到
0.01)
(Ⅱ)若盒中黑棋与白棋共有 4 枚,某同学一次摸出两枚棋,请计算这两枚棋颜
色不同的概率,并说明理由.
(23)(本小题满分 12 分)
如图,AB 是半圆 O 的直径,C,D 是半圆 O 上的两点, AC BD ,AE 与弦 CD
的延长线垂直,垂足为 E. D C E (Ⅰ)求证:AE 与半圆 O 相切; (Ⅱ)若 DE 2,AE 2 3 ,求图中阴影部分的面积.
A O B
九年级数学 — 3 — (共 4 页)
(24)(本小题满分 12 分)
已知△ABC,∠ACB 90°,AC BC 4,D 是 AB 的中点,P 是平面上的一点,且 DP 1,连接 BP,CP.
P 在线段 BD 上时,求 CP 的长; (Ⅰ)如图,当点
CP 的长; (Ⅱ)当△BPC 是等腰三角形时,求
(Ⅲ)将点 B 绕点 P 顺时针旋转 90°得到点 B′,连接 AB′,求 AB′的最大值.
A A A
D P
B C B
C 备用图
B 备用图
C
(25)(本小题满分 12 分)
已知二次函数 y ax2 bx 1 (a>0,b<0)的图象与 x 轴只有一个公共点 A.
2
(Ⅰ)当 a 1 时,求点 A 的坐标;
2
(Ⅱ)过点 A 的直线 y x k 与此二次函数的图象相交于另一点 B.当 b≥ 1 时,
求点 B 的横坐标 m 的取值范围.
九年级数学 — 4 — (共 4 页)
福州市 2017-2018 学年第一学期九年级期末考试
数学试题答案及评分标准
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主 要考查内容比照评分参考制定相应的评分细则.
2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内 容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数 的一半;如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.
一 、选择题(每小题 4 分,共 40 分)
1.C 2.A 3.B 4.D
5.D 6.B 7.A 8.C 9.A 10.D
二、填空题(每小题 4 分,共 24 分)
11. y 6x 1 12. 4
13.三 14.300 15.2
16.3∶2
三、解答题(满分 86 分) 17.解法一:
x2 2x 1, ································ ································
································
·········
x2 2x 12 1 12, ································
································ ······························
(x 1)2
2. ································
································ ································
······· x 1 2 ,
x 1 2 ,································
································
································
········
即 x1 1 2 ,x2 1 2 . ································
································
·················
解法二:
a 1,b 2,c 1. ································
································
························
Δ b2 4ac ( 2)2 4 1 ( 1) 8>0. ································
·······························
方程有两个不等的实数根
x b b2 4ac 2a ·
······························· ································
································
(2 2) 1 8 1 2 , ································ ································
························
即 x1 1+ 2 ,x2 1 2 .································
································
···················
18.解:a 1,b 2m 1,c m(m 1). ································ ································ ······· Δ b2 4ac (2m 1)2 4 1 m(m 1) ································ ··························· 4m2 4m 1 4m2
4m································ ································ ··············· 1,
九年级数学答案 — 1 — (共 7 页)
1 分
3 分 4 分
6 分 8 分
1 分 3 分
4 分 6 分 8 分
1 分
3 分
5 分
∵Δ 1>0, ································
································
∴不论实数 m 取何值,方程总有实数根. ································
································
···························
7 分 8 分
19.已知:如图,△ABC∽△A′B′C′,相似比为 k.AD 是△ABC 的高,A′D′是△A′B′C′的高.
求证: AD k . ································ ································ ··················· 3 分(含图形)
AD
证明:∵△ABC ∽△A′B′C′,
∴∠B ∠B′, AB k . ································ ································ ············· 4 分
A AB
A′ 又 AD 是△ABC 的高,A′D′是△A′B′C′的高,
∴AD⊥BC,A′D′⊥B′C′, ∴∠ADB ∠A′D′B′ 90°,
B ∴△ABD∽△A′B′D′. ································ ∴ AD AB , ADAB∴ AD k . ································ AD
································
D C B′ ··················
D′ C′
6 分
································ ····························· 8 分
20.解:(Ⅰ)p 96 .································
V
································ ······························· 3 分
(Ⅱ)把 p 144 代入 p 96 ,得
V
2 立方米).································ V 96 (3 144
································ ·········· 4 分
2 立方米. 从结果可以看出,如果气压为 144 千帕时,那么气球的体积为 3
对于函数 p 96 ,当 V>0 时,V 越大,p 越小, ································ ··········
V
这样气压不大于 144 千帕时,气球不爆炸,
2 立方米. 则气球的体积 V 至少为 ································ ····························· 3
6 分
8 分
21.解:(Ⅰ)
A
P'
B
P C
··········· A
································ ································ ································ 则△AP′C 为△APB 绕点 A 逆时针旋转 50°后得到的三角形. ································ ································ ····· 3 分
(Ⅱ)由旋转得:∠PAP′ 50°,AP AP′,△ABP≌△ACP′,
∴∠APP′ ∠AP′P 65°,∠AP′C ∠APB. ·········· 4 分 ∵∠BAC 50°,AB AC, ∴∠B 65°.································ ··················· 5 分 ∵∠BAP 20°,
2 分
E B P
C
P'
九年级数学答案 — 2 — (共 7 页)
∴∠APB 180° ∠BAP ∠B 95°, ································
∴∠AP′C ∠APB 95°, ································ ································ ∴∠PP′C ∠AP′C ∠AP′P 95° 65° 30°. ································
·························
6 分
······· 7 分
············ 8 分
22.解:(Ⅰ)0.25 ································
····· 3 分
4 分 (Ⅱ)由(Ⅰ)可得,黑棋的个数为 4 0.25 1,∴白棋的个数为 4 1 3. ··············
列表如下:
黑 白 白 白 1 2 3 黑 (白 (白 (白 1,黑) 2,黑) 3,黑) 白 (白 1 (黑,白 1) 2,白 1) (白 3,白 1) 白 (白 2 (黑,白 2) (白 1,白 2) 3,白 2) 白 3 (黑,白 3) (白 1,白 3) (白 2,白 3) ································ ································ ································ ············ 7 分 由表可知,所有可能出现的结果共 12 种情况,并且每种情况出现的可能性相等. ································ ································ ································ ··········· 8 分 其中摸出两枚棋的颜色不同(记为事件 A)的结果有 6 种, 即(黑,白 (白 (白 1),(黑,白 2) ,(黑,白 3),(白 1,黑) ,2,黑) ,3,黑). ∴P(A) 6 1 .································ ································ ·············· 10 分
12 2
1 . ∴该同学一次摸出两枚棋,这两枚棋颜色不同的概率为 2
································ ································
23.(Ⅰ)证明:证法一:
连接 AC. ································ ∵ AC BD ,
································ ·························· 1 分
∴ AC CD BD CD , 即 AD BC . ································ ·············· ∴∠CAB ∠ACD, ∴AB∥CE. ································ ∵AE⊥CD, ∴∠AEC 90°, ∴∠EAB 180° ∠AEC 90°, ∴AE⊥AB, ································ ∵OA 为半径,
∴AE 与半圆 O 相切. ································ 证法二:
连接 AD,BC. ································ ∵ AC BD , ∴∠DAB ∠CBA. ································
·················
E D C 2 分
3 分
A O B
································
································ ································
································
E D ·······················
·········· ···················
·············
C 4 分 5 分 1 分 2 分
∵四边形 ABCD 是半圆 O 的内接四边形, ∴∠CBA ∠CDA 180°, ∴∠CDA ∠DAB 180°, ∴AB∥CE. ································ ································ ∵AE⊥CD, ∴∠AEC 90°, ∴∠EAB 180° ∠AEC 90°,
A O·· ················ B 3 分
九年级数学答案 — 3 — (共 7 页)
∴AB⊥AE, ································ ∵OA 为半径,
∴AE 与半圆 O 相切. ································
································
································
·······················
··········
4 分 5 分
(Ⅱ)解:
解法一(对应(Ⅰ)中证法一): 连接 AD,取 AD 中点 F,连接 EF,OD.
∵在 Rt△ADE 中,∠AED 90°,AE 2 3 ,DE 2, ∴AD AE2 DE2 4.································ ∵F 为 AD 中点, ∴EF 是 Rt△AED 斜边 AD 的中线, ∴EF 1 AD 2. ································
2
∴ED EF DF 2, ∴△EDF 是等边三角形,
································
······ 6 分
································ ················
E D F B C 7 分
·················· ∴∠EDA 60°, ································ ································ A O由(1)知,AB∥CE, ∴∠DAO ∠EDA 60°, ································ ································ ∵OA OD,
∴△ADO为等边三角形, ∴ AOD 60,OA AD 4, ································ ······························· ∴ S阴影 S四边形AODE S扇形AOD
2
1 (2 4)2 3 6042 360 6 3 8. ································ ································
3
解法二(对应(Ⅰ)中证法二): 过 O 点作 OF CD 于点 F ,连接 OD . 则 DF CF 1 CD , OFD 90. ································
2
∵ EAB AEF 90,
8 分
······ 9 分
10 分
············ 12 分
························
E D C 6 分
∴ EAB AEF OFD 90, ∴四边形 AOFE为矩形, ∴ OF AE , EF AO . 又∵AE 2 3 , F
A O B
∴ OF 2 3 .································ 设半圆 O 的半径为 R,又 DE 2, 则 OD R,DF EF DE R 2, ∵在△ODF 中, OFD 90, ∴ OF2 DF2 OD2 , (2 3)2 (R 2)2 R2 , 解得 R 4 , ································ ∵在△ADE 中, AED 90,
································ ····················· 7 分
································
·······················
································
8 分
····· 9 分
∴ AD AE2 DE2 4 , ································
∴ AD DO OA, ∴△ADO为等边三角形,
九年级数学答案 — 4 — (共 7 页)
∴ AOD 60, ································ ∴ S阴影 S四边形AODE S扇形AOD
2
1 (2 4)2 3 6042 360 6 3 8. ································
3
································ ················· 10 分
································ ············ 12 分
24.解:(Ⅰ)连接 CD.
∵在△ABC 中,∠ACB 90°,AC BC 4,
∴AB AC2 BC2 4 2 . ································ ∵D 为 AB 中点, ∴CD 1 AB BD 2 2 ,CD⊥AB, ························
2 ∵在△CPD 中,∠CDP 90°,DP 1,CD 2 2 ,
··· 1 分 2 分
A
D P B C
∴CP CD2 DP2 3. ································ ································ ······· 3 分 (Ⅱ)∵DP 1, ∴点 P 在以点 D 为圆心,半径为 1 的⊙D 上. (ⅰ)当 BP CP 时,
∵CD DB, ∴P,D 都在 BC 的垂直平分线上, ∴DP 垂直平分 BC.································ ································ ····· 4 分
A 设直线 DP 交 BC 于 E,
∴∠PEC 90°,BE EC 2. 又 P
∵∠CDB 90°, D ∴DE 1 BC CE 2. P 2
∵在△PCE 中,∠PEC 90°∴PC PE2 EC2 , B C E 2 5 . ①当 P 在线段 DE 上时,PE DE DP 1,则 PC 12 2······ 5 分 ②当 P 在线段 ED 的延长线上时,PE DE DP 3, A
2 2则 PC 3 2 13 . ························· 6 分
(ⅱ)当 PC BC 时, D P ∵PC≤CD DP 2 2 1<BC,
∴PC BC,即该情况不成立. ····················· (ⅲ)当 PB CB 时,
同(ⅱ)可得,该情况不成立. ····················
7 分 8 分
B C
综上,当△BPC 是等腰三角形时,CP 的长为 5 或 13 .
(Ⅲ)连接 BB′.
由旋转得,PB PB′,∠BPB′ 90°, ∴∠PBB′ 45°,
∴BB′ PB2 PB2 2 PB,
∴ BB 2 .
PB
∵AC BC,∠ACB 90°, ∴∠ABC 45°, ∴∠ABC ∠PBB′,
A
B' P D 九年级数学答案 — 5 — (共 7 页)
B C∴∠ABB′ ∠CBP.
∵ BABC 4 4 2 2 , ∴ BA BA BB PBBC , BC即
BBPB ,
∴△ABB′∽△CBP, ································ ································ ·············· ∴ CP ABBABC
2 , ∴AB′ 2 CP. ································
································ ··················· ∵PC≤CD DP 2 2 1, ∴点 P 落在 CD 的延长线与⊙D 的交点处(⊙D 的半径为 1),PC 的值最大. ∴AB′≤ 2 (2 2 1) 4 2 , ∴AB′的最大值为 4 2 .································
································ ······
25.解:(Ⅰ)∵二次函数图象与 x 轴只有一个公共点, ∴Δ b2 4a 1 b2 2a 0,
∴b2
2
2a. ································ ································ ···························· 当 a 1 时,b2 2 2 12 1,
∵b<0, ∴b 1. ································ ································ ···························· ∴二次函数解析式为 y 1 2 x2 x 1 ,
2
当 y 0 时,x1 x2 1, ································ ································ ···········
∴A(1,0).································ ································ ·························· (Ⅱ)由(Ⅰ)得 b2 2a,
∴a 1 b2.
21
∴y b2x2 bx 1 1 (bx 1)2, ································ ··························
2 2 2 当 y 0 时,x 1 ,
b
∴点 A 的横坐标为 1 . ································ ································
·········· b
∴A( 1 ,0).
b
将点 A 代入 y x k,得 k 1 .································ ································
b
y 1 b2 x2 ∴由 2 bx 12 消 y 得 1 y x 1. 2 b2x2 (b 1)x 1 2 1b 0, 1 b
解得 x1 ,x2 2 b .
b b2
∵点 A 的横坐标为 1 ,
b
九年级数学答案 — 6 — (共 7 页)
9 分
10 分
12 分
1 分
2 分
3 分
4 分
5 分
6 分
7 分
∴点 B 的横坐标 m 2 b . ································ ································ ····· 9 分
b2
∴ m 2 b 2 1 2 ( 1 1 ) 2 [(1)2 2 1 1 (1)2 (1)2 ] 2 (1 1 )2 1 ,
4 b 4 4 b 4 8 b b2 2b b2 b2 b
∵2>0,
1 < 1 时,m 随 1 的增大而减小. ∴当 ································ ······················· 10 分 b 4 b 又∵ 1≤b<0, 1 ≤ ∴ 1. ································ ································ ·························· 11 分 b
∴m≥2 (1 14 )2 1 8
3,
即 m≥3. ································ ································ 九年级数学答案 — 7 — 共 7 页)
····························· 12 分
(
因篇幅问题不能全部显示,请点此查看更多更全内容