щ:1000−8152(2011)08−1056−07
ControlTheory&Applications
Vol.28No.8Aug.2011
эԊѯ
ӄ1,2,
1,1,2
(1.Кնӱ,110819;
2.Кնӱ,110819)
:э,ԛ(AIW--CPSO)Ԋ(IIR)ѯя,.IIRѯԊ(FIR)ѯяээնФ.Ӊ,.Ч(AIW--CPSO)Ԯ(PSO)ԤIIRѯջ.ԛ,Վэ,AIW--CPSO--IIRѯ,ээ.
Ս:э;;Ԋѯ;:TP273ѓ:A
Onlineinfinite-durationimpulseresponsefilteringinversecontrolfor
aclassofdiscretetime-varyingsystems
LIUJian-chang1,2,YUXia1,LIHong-ru1,2
(1.StateKeyLaboratoryofSyntheticalAutomationforProcessIndustries,NortheasternUniversity,
ShenyangLiaoning110819,China;
2.SchoolofInformationScienceandEngineering,NortheasternUniversity,ShenyangLiaoning110819,China)
Abstract:Foraclassofdiscretetime-varyingsystems,weproposedanonlineinfinite-durationimpulseresponse(IIR)filteringadaptivesystemidentificationmethodbasedontheadaptiveinertia-weightedcooperatedparticleswarmoptimization(AIW--CPSO)algorithm.Thisapproachachievestheperfectmatchingofzero-poleforthereal-timetrack-ingcontrol.TheIIRfilteravoidstheenforcedoff-linetrainingprobleminducedbytheirregularvariationintheeigenvaluesofthecorrelationmatrixinfinite-durationimpulseresponse(FIR)filterwhenidentifyingatime-varyingsystem.Italsore-ducestheweightingvectorlengthintheonlinetrainingprocess,andimprovestheefficiencyofoptimizationandmodeling.Onthebasisofthetraditionalstandardparticleswarmoptimization(PSO)algorithm,thedesignedAIW--CPSOalgorithmprovidesabettersolutiontotheglobaloptimizationprobleminselectingtheproperIIRthanthetraditionalstandardPSOalgorithm.Simulationanalysisshowsthat,fordiscretetime-varyingsystems,theadaptiveinversecontrolmethodbasedontheonlineAIW--CPSO--IIRfiltercanrealizethefastonlinemodelingofunknownplantseffectively,andtrackthereal-timevariationofeigenvaluesoftime-varyingsystems.
Keywords:discretetime-varyingsystem;adaptiveinversecontrol;infiniteimpulseresponsefilter;particleswarmoptimizationalgorithm
1(Introduction)
ӱ,Фэђթ.ӱa,э.ӱ,ӱ,ҕӱ҂э,эն(ӈնб).ф,
ҕэ,Ֆҕэ[1].ԢՎ,,эӮ҂э.Վ,эяФ,ӮФ[2∼4].,эҕэaэ҂3.э;
:2010−05−28;:2010−10−20.
:Џ(50974145);(20092012).
8ӄ:эԊѯ1057
҂ӈӈФϿԐѩ;Чթaѩӈӈնэҕэ.
,ҕэӈ,э,ҕэ.ԩ,Фҕээӈ[5,6].,ҕӈ҂,ҕэ҂,ղ҂.Վ,ԛСϿս[4,7],Վээ,э҂э,і҂.
Վ,ЧҐՎ.[8]Widrowԛ.,ѩՎхоҕэ҂[9].б,эѩ,҂Ф.,Ԋ(finite-durationim-pulseresponse,FIR)ѯ[10,11].Վѯ҂҂ҵ,эӉ,҂҂҂Ӊ.҂҂҂ӱэ(,),.FIRѯ,ҐԊ(infinite-durationimpulseresponse,IIR)ѯя,хэӉ.IIRѯFIR҂(҂ѓՑ),С.Վ,Чԛ(CPSO)[12],ЌӻԤ҄,ԛ(AIW--CPSO),IIRѯ.AIW--CPSO--IIRѯэ,ѩ.
2AIW--CPSO--IIRѯ(ThestructureandalgorithmofAIW--CPSO--IIRfilters)
2.1
эяIIRѯ(TheIIRfil-tersfortime-varyingsystemsidentification)
ѯ,IIRѯяѯ.,IIRѯЧ(ARMA),ԛ[13]
y(n)=Pi=0
ai(n)u(n−i)+
Qi=1
bi(n)y(n−i),(1)
:ai(n)bi(n)ARMAҕ,y(n)ԛ,u(n)ѯ,PQљѯ(PQ).IIRѯ҂э,іARMA:
Pˆ(z)=A(z)1−B(z),(2)
A(z)B(z)љ
A(z)=Paiz−i
,B(z)=
Qi=0
i=1
biz−i.
(3)
IIRѯэя
1.
1IIRѯэя
Fig.1ThestructureofIIRfilterfortime-varying
systemidentification
1ҵe(n)=yd(n)−yˆ(n),yd(n).я,u(n)ѯ,Վ
љӁyd(n)ѯԛy
ˆ(n).ѯӮw
ˆ(n){ai(n)}Pi=0{bi(n)}Q
i=1Ӯ,
wˆ(n)=[a0(n)a1(n)···aP(n)
b1(n)b2(n)···bQ(n)]T.
(4)
Ϯ,սӈҵ(MSE)і,ЧѓіPSO
105828
.1я,MSEս:
Ji(n)=E[ei(n)2
].
(5)
Ji(n)ղ,ѯҕіҕ.
ЧҐ(PSO)IIRѯ,.PSO,,ՎսJi(n).Վ,IIRѯ,(5).ԛ,MSEэ,іJi(n)Я,,іѯҕ.ս,ԛ,ҕIIRѯ.
IIRѯAIW--CPSO.
2.2
(Theadap-tiveinertiaweightcooperatedparticleswarmoptimizationalgorithm)
ѓPSO[14]ԚթN,Mրҕ.սі,սӱ.іԛ.սn,iXi(n)Vi(n)і.Վ,PSO:
Xi(n)=[x1(n)x2(n)···xM(n)],(6)Vi(n)=[v1(n)v2(n)···vM(n)].
(7)
PSOԛս⎧:⎪⎨Vi(n+1)=ωVi(n)+c1r1[Pbest−Xi(n)]+
⎪⎩
c2r2[Gbest−Xi(n)],
(8)Xi(n+1)=Xi(n)+Vi(n+1),:Pbestսіֆ,ӫ;Gbestսі,ӫ.X=[X1X2···XM];r1,r2[0,1]э;c1,c2;ω.Ϯ,vi[−vmax,vmax],х.(8),,ӱФ.
,[15]ԛPSO—--(CRPSO),ѓ҂҆,Ґ҆.,.CRPSO⎧⎪⎨Vi(n+1)=ωVi(n)+c1r1[Pbest−Xi(n)]+
⎪⎩
c2r2[Gbest(r)−Xi(n)],
(9)Xi(n+1)=Xi(n)+Vi(n+1),:i=1,···,NCRPSO,r1N,҂Gbest(r),ղ.[12]҄,ԛ҆(CPSO).Gbest(r),⎧
.⎪⎪⎪⎪V⎨i(n+1)=ωVi(n)+0.5c1r1[Pbest−Xi(n)]+0.5c2r2[Gbest−Xi(n)]+
⎪⎪(10)
⎪⎪⎩
0.5c2r2[Gbest(r)−Xi(n)],Xi(n+1)=Xi(n)+Vi(n+1).0.5Pbest,GbestGbestGbest(r).
Վ,ԮФ҂ԛ[16,17].҂љ.ЌԤ,эӮPSOҕ.Ч(11)[18]:
ω⎧
(n)=⎪⎪⎨1−1A0·ΔJ2(n)+2,ΔJ(n)0,⎪⎪(11)
⎩1A0·ΔJ2(n)+2,ΔJ(n)<0.
A0,[0,1],ѩսэΔJ(n)ω(n),ս,ս,.[19],ӈҐSigmod.թ.Ֆ:Sigmoid
8ӄ:эԊѯ1059
O(2N),N;ս,O(N).Վ,,.
,⎧
(AIW--CPSO)
⎪⎪⎪⎪⎪Vi(n+1)=⎪⎪⎨ω(n)Vi(n)+0.5c1r1[Pbest−Xi(n)]+
⎪⎪0.5(12)
⎪c2r2[Gbest−Xi(n)]+⎪⎪⎪⎪⎩
0.5c2r2[Gbest(r)−Xi(n)],Xi(n+1)=Xi(n)+Vi(n+1).
,СCPSO
҆Ԥ҄,я.
3
AIW--CPSO--IIRѯ(TheadaptiveinversecontrolsystemswithonlineAIW--CPSO--IIRfilters)
2[20].Ф҂і.҂Ϯ,v(n)і.яяԛP
ˆ,
(z)ˆ,(z).2,ˆC
C
ˆP
(z)яӱ,(z).ѓФԮն
ӱҕM(z).ҕr(n)ҕѯds(n).Фԛys(n)ds(n)ҵҵ,ε(n).
2
Fig.2Thestructureofonlineadaptiveinversecontrolsystem
ҕM(z).Ԯ,ҕ.Վ,ҕM(z)Ӯ,ҕ
1ԛ
.
C
ˆ[21]:(z)ҵ,,ս
Js(n)=E[ε(n)2
].
(13)
,ս,Wiener
Cˆ(z)=M(z)Pˆ(z)=M(z)·Pˆ1(z).(14)
(14),ҕ
..C
ˆ,
(z)҂,.Ϯ,ҕ
,P
ˆ(z),яӱЌ,ѩ҂Ќ.Վ,ӱ
ˆ(z).AIW--CPSOC
ˆC
--IIRѯ(z)ӱ.C(z)=
Ac(z)
1−Bc(z),
(15)
:Az)BPc(c(z)љіAc(z)=i=0
aicz−i
Bc(z)=
Qi=1
bicz−i.ӮwˆC(n)
{aic(n)}Pi=0{bic(n)}Q
i=0і:
wˆC(n)=[a0c(n)a1c(n)···aPc(n)
b1c(n)b2c(n)···bQc(n)]T.(16)
ս,IIRѯҕҕ,ѩҕэя.҄AIW--CPSO--IIRѯӱ,ԛ҄:
҄1Ԛ,ԛN,,Ԛ,ӮԚXiVi.
҄2,xif(xi),ѩԚPbestGbest.
҄3ЧPbest,f(xi) (11)ω(n). 106028 ҄7(12)Vi Xi. ҄8҄2սՑղսҵѓ,ՎXi. IIRѯяяљf(xi):я,ҵe(n);я,ҵε(n). 4(Simulationanalysis) AIW--CPSO--IIRѯ,эӱ: y(n+1)=0.7y(n)−p(n)·y(n−1)+ q(n)·u(n)+0.5u(n−1). (17) ,p(n),q(n)љրяэҕ,љэ: p(n)=sin(0.05n), (18)q(n)=(1−n)/(100+n)+0.5. (19) ҕӈ,ҵӱ y(n+1)=0.7y(n)−0.1y(n−1)+ u(n)+0.5u(n−1). (20) MATLAB7.8.0(R2009a)ϱЧSimulink,ҠWindows7Professional,PCIntel(R)Core(TM)2.53GHz,2Gթ.2,яҐЧԛAIW--CPSO--IIRѯ,,Ґ0.1s,ѩљҐ500ՑЌ. бAIW--CPSO,э,ҐAIW--CPSOCPSOIIRѯѩэ.Ќб,CPSO--IIRѯ҆ҕAIW--CPSO--IIRѯ:PopSize=25;A0=2;c1=c2=2;IIRѯP=5;Q=5.҂CPSO--IIRѯω=0.35;AIW--CPSO--IIRѯԚω(0)=0.35. ҩAIW--CPSOэҕя,ԛAIW--CPSO--IIRѯэҕp(n)q(n)я3(a)(b). (a)эҕp(n) (b)эҕq(n) 3эҕя Fig.3Thereal-timetrackingcurvesforonlinetime-varying parameteridentification ҂ѯэя4(a)(b).ӱҵ5(a)(b). (a)CPSO-IIRѯ (b)AIW--CPSO--IIRѯ 4эяԛ Fig.4Theoutputcurvesofonlineidentificationfor unknowntime-varyingsystem (a)CPSO-IIRѯ 8ӄ:эԊѯ1061 (b)AIW--CPSO--IIRѯ5սӱҵ Fig.5Themean-squareerrorcurveofiterationprocessing Ֆԛ,AIW--CPSO--IIRѯэҕp(n)q(n)я.бCPSO--IIRѯ,AIW--CPSO--IIRѯэяҵ. ՎԤ,2ձѩэ.э,Ґ0.1s.ҕҵӱ(20).ӱAIW--CPSO--IIRѯб.AIW--CPSO--IIRѯҕ҂э,ӈ3ҪBP,6Ҫ,ѓ1.0×10−5,նսՑ2000Ց,ҪԮҐSigmoid,ԛҪԮҐ.ҐLevenberg-Marquardt,эя.ԛэҵљ6(a)(b)7(a)(b). (a)BP (b)AIW--CPSO--IIRѯ 6эԛ Fig.6Theoutputcurvesofonlineinversecontrolfor time-varyingsystem (a)BP (b)AIW--CPSO--IIRѯ 7эҵ Fig.7Thetrackingerrorcurveofonlineinversecontrolfor time-varyingsystem Ֆԛ,э,BPбAIW--CPSO--IIRѯҕԛ.,ҕԛds(n)ԛնэ,ԛds(n)Ӯҵ,ӱ,б6,BPҵAIW--CPSO--IIRѯі.,AIW--CPSO--IIRѯҵ,ԛҕԛds(n). Վ,ЧAIW--CPSO--IIRѯԩэіӈBP,,ѩҕэ. 5(Conclusion) Чҕэ,ԛAIW--CPSO--IIRѯ.Ҧэ҂Ф,Վҕэ.IIRѯя,ԮFIRѯяээӉ.,ЧԛAIW--CPSOIIRѯҕ.хԮPSO҆,яѯҕ,э.і 106228 ,AIW--CPSO--IIRѯ,ҕэѩԛ,. ҕ(References): [1]PAGILLAPR,ZHUYL.Adaptivecontrolofmechanicalsystems withtime-varyingparametersanddisturbances[J].JournalofDy-namicSystemsMeasurementandControl–TransactionsoftheAsme,2004,126(3):520–530.[2]LOGEMANNH,RYANEP.Time-varyingandadaptivediscrete-timelow-gaincontrolofinfinite-dimensionallinearsystemswithin-putnonlinearities[J].MathematicsofControlSignalsandSystems,2000,13(4):293–317.[3]CHENMS,WUJM.Anewmodelreferenceadaptivecontrolforlin-eartime-varyingsystems[J].InternationalJournalofAdaptiveCon-trolandSignalProcessing,2000,14(4):469–479.[4]PEAUCELLED,KHANHM,PAKSHINPV.LMI-basedanalysis ofrobustadaptivecontrolforlinearsystemswithtime-varyingun-certainty[J].AutomationandRemoteControl,2009,70(9):1540–1552.[5]MARINOR,TOMEIP.Adaptivecontroloflineartime-varyingsys-tems[J].Automatica,2003,39(4):651–659.[6]DIMOGIANOPOULOSD,LOZANOR.Adaptivecontrolforlinear slowlytime-varyingsystemsusingdirectleast-squaresestimation[J].Automatica,2001,37(2):251–256.[7]YANGGH,YED.Adaptiverobustcontrolsynthesisforlinearsys-temswithtime-varyinguncertainties[C]//The2ndIEEEConferenceonIndustrialElectronicsandApplications.NewYork:IEEE,2007:1727–1730.[8]WIDROWB,WALACHE.AdaptiveInverseControl,SignalPro-cessingApproach[M].NewJersey:JohnWiley&Sons,2007.[9],,.[J]., 2003,25(6):15–18. (LIUXia,ZHANGDuanjin,WUJie.Surveyofadaptiveinversecon-trol[J].ElectricalAutomation,2003,25(6):15–18.)[10]YANGTB.Performanceofvariablestep-sizeLMSalgorithmsfor linearadaptiveinversecontrolsystems[C]//StudentConferenceonEngineering,SciencesandTechnology.NewYork:IEEE,2004:122–126.[11]LIM,YANGC,SHUY.Animprovednonlinearadaptiveinverse controlsystemsbasedonfiltered-εLMSalgorithm[C]//Proceedingsofthe27thChineseControlConference.Beijing:BeijingUniversityAeronautics&AstronauticsPress,2008,4:101–105. [12],,.PID [J].,2009,26(12):1317–1324.(PIAOHaiguo,WANGZhixin,ZHANGHuaqiang.NonlinearcontrolsystemofPIDneuralnetworkbasedoncooperatedparticleswarmoptimization[J].ControlTheory&Applications,2009,26(12):1317–1324.)[13]HAYKINS.AdaptiveFilterTheory[M].UpperSaddleRiver:Pren-tice-Hall,2002.[14]KENNEDYJ,EBERHARTRC,SHIY,etal.SwarmIntelli-gence[M].SanFrancisco:MorganKaufmannPublisher,2001.[15]ZHAOL,YANGYP.PSO-basedsinglemultiplicativeneuronfor timeseriesprediction[J].ExpertSystemswithApplications,2009,36(2):2805–2812.[16]LIUB,WANGL,JINYH,etal.Improvedparticleswarmoptimiza-tioncombinedwithchaos[J].ChaosSolitons&Fractals,2005,25(5):1261–1271.[17]ALIMM,KAELOP.Improvedparticleswarmalgorithmsfor globaloptimization[J].AppliedMathematicsandComputation,2008,196(2):578–593.[18]YUX,LIUJC,LIHR.Anadaptiveinertiaweightparticleswarm optimizationalgorithmforIIRdigitalfilter[C]//2009InternationalConferenceonArtificialIntelligenceandComputationalIntelligence.NewYork:IEEE,2009,1:114–118.[19]KRUSIENSKIDJ,JENKINSWK.Particleswarmoptimizationfor adaptiveIIRfilterstructures[C]//Proceedingsofthe2004CongressonEvolutionaryComputation.NewYork:IEEE,2004:965–970.[20]PLETTGL.Adaptiveinversecontroloflinearandnonlinearsystems usingdynamicneuralnetworks[J].IEEETransactionsonNeuralNet-works,2003,14(2):360–376.[21]LIUJC,YUX,LIHR.Adaptiveinversecontrolofdiscretesystem usingonlineadaptivePSO-IIRfilters[J].JournalofComputationalInformationSystems,2010,6(10):3173–3181. : ӄ (1960—),,,Ѱ, aӱa,E-mail:liujianchang@ise.neu.edu.cn; (1982—),,Ѱ, ԩa,E-mail:yuxia.neu@gmail.com; (1968—),,,a ,E-mail:lihongru@ise.neu.edu.cn. 因篇幅问题不能全部显示,请点此查看更多更全内容