在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。用这种解题思路解答的应用题,称为归一问题。所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。
例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)
分析:以一根钢轨的重量为单一量。 (1)一根钢轨重多少千克? 1900÷4=475(千克)。
(2)95000千克能制造多少根钢轨? 95000÷475=200(根)。
解:95000÷(1900÷4)=200(根)。 答:可以制造200根钢轨。
例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克? 分析:以1头奶牛1天产的牛奶为单一量。 (1)1头奶牛1天产奶多少千克? 630÷5÷7=18(千克)。
(2)8头奶牛15天可产牛奶多少千克? 18×8×15=2160(千克)。
解:(630÷5÷7)×8×15=2160(千克)。 答:可产牛奶2160千克。
例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?
分析与解:以1台磨面机1时磨的面粉为单一量。 (1)1台磨面机1时磨面粉多少千克? 2400÷3÷2.5=320(千克)。
(2)8台磨面机磨25600千克面粉需要多少小时? 25600÷320÷8=10(时)。 综合列式为
25600÷(2400÷3÷2.5)÷8=10(时)。
例4 4辆大卡车运沙土,7趟共运走沙土336吨。现在有沙土420吨,要求5趟运完。问:需要增加同样的卡车多少辆?
分析与解:以1辆卡车1趟运的沙土为单一量。 (1)1辆卡车1趟运沙土多少吨? 336÷4÷7=12(吨)。
(2)5趟运走420吨沙土需卡车多少辆? 420÷12÷5=7(辆)。 (3)需要增加多少辆卡车? 7-4=3(辆)。 综合列式为
420÷(336÷4÷7)÷5-4=3(辆)。
与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果。所谓“总量”是指总路程、总产量、工作总量、物品的总价等。
例5 一项工程,8个人工作15时可以完成,如果12个人工作,那么多少小时可以完成? 分析:(1)工程总量相当于1个人工作多少小时? 15×8=120(时)。
(2)12个人完成这项工程需要多少小时? 120÷12=10(时)。 解:15×8÷12=10(时)。 答:12人需10时完成。
例6 一辆汽车从甲地开往乙地,每小时行60千米,5时到达。若要
因篇幅问题不能全部显示,请点此查看更多更全内容