您的当前位置:首页正文

恒定电流知识点的总结

来源:个人技术集锦


恒定电流知识点总结

一、部分电路欧姆定律 电功和电功率

(一)部分电路欧姆定律

1.电流

(1)电流的形成:电荷的定向移动就形成电流。形成电流的条件是:

①要有能自由移动的电荷; ②导体两端存在电压。

(2)电流强度:通过导体横截面的电量q跟通过这些电量所用时间t的比值,叫电流强度。

①电流强度的定义式为:

②电流强度的微观表达式为:

n为导体单位体积内的自由电荷数,q是自由电荷电量,v是自由电荷定向移动的速率,S是导体的横截面积。

(3)电流的方向:物理学中规定正电荷的定向移动方向为电流的方向,与负电荷定向移动方向相反。在外电路中电流由高电势端流向低电势端,在电源内部由电源的负极流向正极。

2.电阻定律

(1)电阻:导体对电流的阻碍作用就叫电阻,数值上:。

(2)电阻定律:公式:,式中的为材料的电阻率,由导体的材料和温度决定。

纯金属的电阻率随温度的升高而增大,某些半导体材料的电阻率随温度的升高而减小,某些合金的电阻率几乎不随温度的变化而变化。

(3)半导体:导电性能介于导体和绝缘体之间,如锗、硅、砷化镓等。

半导体的特性:光敏特性、热敏特性和掺杂特性,可以分别用于制光敏电阻、热敏电阻及晶体管等。

(4)超导体:有些物体在温度降低到绝对零度附近时。电阻会突然减小到无法测量的程度,这种现象叫超导;发生超导现象的物体叫超导体,材料由正常状态转变为超导状态的温度叫做转变温度Tc。

3.部分电路欧姆定律

内容:导体中的电流跟它两端的电压成正比,跟它的电阻成反比。

公式:

适用范围:金属、电解液导电,但不适用于气体导电。

欧姆定律只适用于纯电阻电路,而不适用于非纯电阻电路。

伏安特性:描述导体的电压随电流怎样变化。若件叫线性元件;

图线为过原点的直线,这样的元

若图线为曲线叫非线性元件。

(二)电功和电功率

1.电功

(1)实质:电流做功实际上就是电场力对电荷做功,电流做功的过程就是电荷的电势能转化为其他形式能的过程。

(2)计算公式:适用于任何电路。

只适用于纯电阻电路。

2.电功率

(1)定义:单位时间内电流所做的功叫电功率。

(2)计算公式:适用于任何电路。

只适用于纯电阻电路。

3.焦耳定律

电流通过电阻时产生的热量与电流的平方成正比,与电阻大小成正比,与通电时间成正比,即

(三)电阻的串并联

1.电阻的串联

电流强度:

电 压:

电 阻:

电压分配:,

功率分配:,

2.电阻的并联

电流强度

电 压

电 阻

电流分配,

功率分配,

注意:无论电阻怎样连接,每一段电路的总耗电功率P是等于各个电阻耗电功率之和,即P=P1+ P2+…+Pn

二、闭合电路欧姆定律

(一)电动势

电动势是描述电源把其他形式的能转化为电能本领的物理量,例如一节干电池的电动势E=1.5V,物理意义是指:电路闭合后,电流通过电源,每通过lC的电荷,干电池就把1.5J的化学能转化为电能。

(二)闭合电路的欧姆定律

1.闭合电路欧姆定律

闭合电路中的电流跟电源的电动势成正比,跟内、外电路中的电阻之和成反比:

常用表达式还有:

2.路端电压U随外电阻R变化的讨论

电源的电动势和内电阻是由电源本身决定的,不随外电路电阻的变化而改变,而电流、路端电压是随着外电路电阻的变化而改变的:

(1)外电路的电阻增大时,I减小,路端电压升高;

(2)外电路断开时,R=。路端电压U=E;

(3)外电路短路时,R=0,U=0, (短路电流).短路电流由电源电动势和内阻共

同决定.由于r一般很小。短路电流往往很大,极易烧坏电源或线路而引起火灾。

路端电压随外电阻变化的图线如图所示。

3.电源的输出功率随外电阻变化的讨论

(1)电源的工作功率:电功率。

,这个功率就是整个电路的耗电功率,通常叫做电源的供

(2)内耗功率:。

(3)输出功率:

,式中U为路端电压。

特别地,当外电路为纯电阻电路时,

由得,

,故R=r(内、外电阻相等)时

最大,且最大值

为,图线如图所示。

可见,当R<r时,R增大,输出功率增大。

当R>r时,R增大,输出功率减小。

三、电阻的测量

(一)伏安法测电阻

1.原理

,其中U为被测电阻两端电压,I为流经被测电阻的电流。

2.两种测量电路——内接法和外接法

(1)内接法

电路形式:如图所示。

误差:

适用条件:当R>>RA,即内接法适用于测量大电阻。

(2)外接法

电路形式:如图所示。

测量误差: ,即R测<Rx

适用条件:R<<Rv即外接法适用于测小电阻。

3.怎样选择测量电路

(1)当被测电阻Rx的大约阻值以及伏特表和电流表内阻RVRA已知时;

若,用内接法。

若,用外接法

(2)当Rx的大约阻值未知时.采用试测法,将电流表、电压表及被测电阻Rx按下图方式连接成电路;接线时,将电压表左端固定在a处,而电压表的右端接线柱先后与b和c相接,与b相接时,两表示数为(U1,I1),当与c接触时,两表示数变为(U2,I2);

若即电压表示数变化大.宜采用安培表外接法。

若即电流表示数变化较显著时,宜采用安培表内接法。

4.滑动变阻器的两种接法——限流式和分压式

(1)限流式:如图所示,即将变阻器串联在电路中。在触头P从变阻器左端移动到右端过程中,电阻Rx上的电压变化范围为:

(忽略电源内阻)

(2)分压式:如图所示,当触头P从变阻器左端移动到右端过程中,电阻Rx上的电压变化范围是0~E(忽略电源内阻)。

若要求待测电阻的电压从0开始变化时,变阻器一定采用分压式。

(二)用欧姆表测电阻

1.欧姆表的构造

欧姆表构造如图所示,其内部包括电流表表头G、电池E和调零电阻R

2.原理

当红、黑两表笔短接时.如图 (甲)所示,调节R,使电流表指针达到满偏电流(即调零),

此时指针所指表盘上满刻度处.对应两表笔间电阻为0,这时有:

当红、黑表笔断开,如图 (乙)所示,此时,指针不偏转,指在表盘最左端,红、黑表笔间的电阻相当于无穷

大,R=。

当两表笔间接入待测电阻R,时,如图 (丙)所示,电流表的电流为:

当Rx改变,Ix随之改变,即每一个Rx都有一个对应的Ix,将电流表表盘上Ix 处标出对应Rx的Rx值,就制成欧姆表表盘,只要两表笔接触待测电阻两端,即可在表盘上直接读出它的阻值。由于Ix 不随Rx均匀变化,故欧姆表表盘刻度不均匀。

3.合理地选择挡位

由于欧姆表表盘中央部分的刻度较均匀,读数较准,故选用欧姆表挡位时,应使指针

尽量靠近中央刻度。

4.欧姆表使用时须注意

(1)使用前先机械调零,使指针指在电流表的零刻度。

(2)要使被测电阻与其他元件和电源断开,不能用手接触表笔的金属杆。

(3)合理选择量程,使指针尽量指在刻度的中央位置附近。

(4)换用欧姆挡的另一量程时,一定要重新调零。

(5)读数时,应将表针示数乘以选择开关所指的倍数。

(6)测量完毕,拔出表笔,开关置于交流电压最高挡或OFF挡。若长期不用,须取出电池。

[典型例题]

例1、如图所示电路中,电阻R1、R2、R3的阻值都是1Ω,R4、R5的阻值都是0.5Ω,ab端输入电压U=6V,当cd端接伏特表时,其示数是________V;ab端输入电压U=5V,当cd端接安培表时,其示数是_________A。

分析与解答

当cd端接伏特表时,理想伏特表所在支路相当于断路,当R4、R5中没有电流,电路由R1、R2、R3串联构成。伏特表的读数就是R2两端的电压。根据串联电路电压分配的规律可知,Ucd=2V。

当cd端接安培表时,理想安培表电阻为零,因此电路由R4、R5串联后,与R2并联,再与R1、R3串联构成。安培表的读数通过R4的电流。此时电路的总电阻为R=2.5Ω,总电流为I=2A,再根据并联电路电流分配规律可知,安培表的读数为I4=1A。

例2、如图所示,E=6V,r=1Ω,当R1=5Ω,R2=2Ω,R3=3Ω时,平行板电容器中的带电微粒正好处于静止状态,当把R1、R2、R3的电阻值改为Rˊ1=3Ω,Rˊ2=8Ω,Rˊ3=4Ω,带电微粒将做什么运动?

分析与解

当R1=5Ω,R2=2Ω时,

UCD==V=1.5V

微粒静止,故有qE=mg E=mg/q

当Rˊ1=3Ω,R'2=8Ω时,UˊCD==V=4V

前后电场强度之比为====,

Eˊ=8E/3= qEˊ=>mg

故微粒将向上做匀加速运动,

其加速度a==g

例3、如图所示的电路中,R1为滑动变阻器,电阻的变化范围是0~50Ω, R2=1Ω,电源的电动势为6V,内阻

为2Ω,求滑动变阻器R1为何值时,

(1)电流输出功率最大;

(2)消耗在R1上的功率最大;

(3)消耗在R2上的功率最大;

分析与解:

(1)我们首先讨论,当外电路的总电阻R,(R=R1+R2)满足什么条件时,电源的输出功率最大。

由闭合电路欧姆定律I=。

得电源输出功率P=I2R=R==,

显然,当R-r=0,即R=r=2Ω时,

亦即R1=R-R2=2Ω-1Ω=1Ω时,电源输出功率最大,PM===4.5(W)。

(2)由于R2是定值电阻,我们不防将R2看成是电源内阻的一部分即rˊ=r+R2=3Ω,根据前面的结论,

当及R1=rˊ时,在R1上消耗的电功率最大。

取R1=rˊ=3Ω,此时R1上消耗的功率P1===3(W)

(3)R2是固定电阻,根据公式P=I2R可知,在保持R恒定的条件下,通过电阻R的电流强度越大,其功率越大,为了使电路中的电流强度最大,就要使R1的阻值最小,所以,当R1=0时,在R2上消耗的功率最大,

P2=I22R2=R2=W=4W。

说明:

对于电源,有三种意义的电功率:

(1)总电功率P总=P出+P内=EI。

(2)输出功率P出=UI

(3)电源内阻发热损耗的电功率P内=I2r

电源的效率则是=×100%=×100%=×100%

电源的输出功率最大时是否是效率最高呢?

下面我们来讨论这个问题

当电源电动势E和内电阻r一定时,电源的输出功率(外电路的总功率)P出=I2R

随负裁电阻R的变化是非单调的变化。

将I=代入上式可得P出=I2R=R==,

由上式可得,当R=r时,P出最大,且P出m==。

P出随负载电阻及变化的曲线,如图所示,由图可见,对于同一输出功率(P出m除外),有两个可能的外电阻值。

当电源有最大输出功率时,电源的效率=×100%=50%

而当R时(外电路断路),1,

当R0时(外电路短路),0

所以并非电源有最大输出功率时,效率就高。

例4、如图所示的电路中,R1与R3为定值电阻,R2是滑动变阻器。若变阻器的滑动端向右移动,使R2的阻值增大,则安培表的示数将_________。

分析及解

这道题应用闭合电路欧姆定律就可以解决。

推理过程如下:(电源电动势E和内电阻r不变)

R2增大,则外电路总电阻R增大。压(U=E-Ir)增大。

R增大,总电流(I=)减小,而路端电

总电流I减小,即R3的电流I3越小,所以R3的电压(U3=IR3)

减小,从而并联电路部分的电

压(U并=U-U3)增大。R1电阻不变,其电压(U并)增大,则R1的电流I1增大,

从而R2的电流(I2=I-I1)减小,即安培表的示数减小。

注意:无论电路如何连接,局部电阻增大,电路的总电阻就随之增大。

例5、阻值较大的电阻R1、R2串联后,接入电压U恒定的电路,如图所示。现用同一电压表分别测量R1、R2的电压,测量值分别为U1和U2,则:( )

A、U1+U2=U B、U1+U2<U C、U1/U2=R1/R2 D、U1/U2≠R1/R2

解:当把电压表与R1并联后,由于<R1,所以U1小于R1电压的真实值;

同理测量值U2也小于R2电压的真实值。

因此应是U1+U2<U,选项B正确。

判断选项C、D的正确与否不能仅凭简单地定性推理,要通过计算后获得。

电压表与R1并联后,变成R并与R2串联,有

U1=U=U=U

同理,U2=U

可知U1/U2=R1/R2

选项C正确。

例6、在如图所示电路的三根导线中,有一根是断的,电源、电阻器R1、R2及另外两根导线都是好的,为了查出断导线,某学生想先将万用表的红表笔连接在电源的正极a, 再将黑表笔分别连接在电阻器R1的b端和R2的c端,并观察万用表指针的示数,在下列选挡中,符合操作规程的是:( )

A、直流10V挡 B、直流0.5A挡 C、直流2.5V挡 D、欧姆挡

分析与解

因为电路中只有一处断路,因此,在所有连接良好的电路中,任意两点之间的电压都为零,只有在断路两点之间的电压值为电源的电动势。

因此,在电源良好的前提下,用电压表先测电路中两个可疑点a、b之间的电压,若a、b两点之间电压为零,则说明a、b两点之间的电路正常;反之,若a、b两点之间电压为6V,则说明a、b两点之间的电路断路。照此再测量a、c之间的电压,若a、b两点之间电压及a、c之间的电压都为零,那么只有说明第三段导线断路。

因此,选用万用表直流10V挡可行。A正确。选项C的量程太小,不能进行测量。

电流表并联在电路中,无法测量电流值,因此也无法确定电路的正常与否,选项B不正确。

至于D中涉及到的欧姆挡,因为电路无法与电源断开,因此也不能进行判断。如果在电路中再串联一个电键,那么便可以在电键断开之后,使用欧姆挡进行电阻测量,并籍此判断电路正常与否。

因篇幅问题不能全部显示,请点此查看更多更全内容