您的当前位置:首页正文

弹性力学复习资料

2020-06-05 来源:个人技术集锦
弹性力学复习资料

一. 简答题(24分)

1. (8分)弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途?

答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分)

1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。

3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。

4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。

5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方程。

2. (8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征?

答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为:

平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy平面,外力沿板厚均匀分布,只有平面应力分量x,

yxy,存在,且仅为x,y的函数。

平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy平面,外力沿z轴无变化,只有平面应变分量x,

yxy,存在,且仅为x,y的函数。

3. (8分)常体力情况下,按应力求解平面问题可进一步简化为按应力函数求解,应力函数必须满足哪些条件?

4答:(1)相容方程:0

lxmyxsfxmylxysfy(2)应力边界条件(假定全部为应力边界条件,ss):在ss上

(3)若为多连体,还须满足位移单值条件。 一、简答题

1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?

答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数 σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。

平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。

2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有

各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号?

答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x、y、z 、xy、yz、、zx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。

答:答:在推导弹性力学基本方程时,采用了以下基本假定:

(1)假定物体是连续的。

(2)假定物体是完全弹性的。

(3)假定物体是均匀的。

(4)假定物体是各向同性的。

(5)假定位移和变形是微小的。

符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。

5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。

答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的

面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板

支墩就属于此类。

平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长

度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作

用都不沿长度而变化。

6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系?

答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。

平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问

题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的

关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之间的关系,也就是平面问题中的物理方程。

7.按照边界条件的不同,弹性力学平面问题分为那几类?试作简要说明

答:按照边界条件的不同,弹性力学平面问题可分为两类:

(1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在

x、y、xyyx三个应力分量。

(2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力也平行于横截面且不沿长度变化。这一类问题可以简化为平面应变问题。例

坝 的

xzzx0;yzzy0而一般z并不等于零。8.什么是圣维南原理?其在弹性力学的问题求解中有什么实际意义?

圣维南原理可表述为:

如果把物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那麽近处的应力分布将有显著的改变,但远处所受的影响可以不计.

弹性力学的问题求解中可利用圣维南原理将面力分布不明确的情况转化为静力等效但分布表达明确的情况而将问题解决。还可解决边界条件不完全满足的问题的求解。

二、简答题

1.阐述弹性力学的平面问题的五个基本假设及其意义。课本P3

2.面力、体力与应力的正负号规定是什么,要会标明单元体指定面上的应力、面力及

体力。参照课本P5内容和例题1、3。

3.什么是主平面、主应力、应力主方向。

4.平面应力问题与平面应变问题各有什么特点,典型工程实例有哪些?在什么条件下,

x,y,xyx,y,xy平面应力问题的与平面应变问题的是相同的。

5.弹性力学平面问题三类方程的内容。要会默写。

6.在建立弹性力学平衡微分方程、几何方程、物理方程时分别应用了哪些基本假设?

提示:平衡微分方程:连续性假设和小变形假设;几何方程:连续性假设和小变形假设:

物理方程:连续性假设、均匀性假设、各向同性假设、完全弹性假设。

7.按应力求解平面问题时,应力分量应满足哪些条件?

8.简述圣维南原理的基本内容,两种表述方法及其应用举例。

9.若引用应力函数求解平面问题,应力分量与应力函数的关系式是根据弹性力学哪一类基本方程推导出来的。

10.简述逆解法和半逆解法的求解步骤。

11.由于求解微分方程边值问题的困难,在弹性力学中发展了三种数值解法,分别是 什么?

概念题(30分,每题6分)

1.试叙述弹性力学的基本假定及这些基本假定在建立弹性力学基本方程时的作用。

2.叙述平面应力和平面应变问题在结构形状何、所受外力、应力、应变等方面有何特点?

3.写出按应力求解空间问题的基本方程,即:平衡微分方程;应力相容方程;边界条件。

4.何为一点的应力状态?

5.简述圣维南原理并举例说明圣维南原理的作用?

1. 什么是平面应力问题及平面应变问题?

答:平面应力问题:对于含有以下条件:(1)等厚度的薄板; (2)体力fx、

fy作用于体

内,∥xy面,沿板厚不变;(3)面力fx、

fy作用于板边,∥xy面,沿板厚不变; (4)约束

yxyu、v作用于板边,∥xy面,沿板厚不变。 那么可以简化为应力中只有平面应力x,存在并且只有xy面内的面力或体力的问题。

,

平面应变问题:对于含有以下条件:(1)很长的常截面柱体 ;(2)体力fx、内,∥xy面,沿长度方向不变;(3)面力fx、

fy作用于体

fy作用于柱面,∥xy面,沿长度方向不变;(4)

约束u、v作用于柱面,∥xy面,沿长度方向不变。 那么可以简化为应变中只有平面应变

xyxy,, 存在并且只有xy面内的面力或体力的问题。

2. 简述圣维南原理 ?圣维南原理表明了什么?

答:圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对同一点的主矩也相同),那么,近处的应力分量将有显著的改变,但远处所受的影响可以不计。

圣维南原理表明:在小边界上进行面力的静力等效变换后,只影响近处(局部区域)的应力,对绝大部分弹性体区域的应力没有明显影响。

3. 何谓逆解法和半逆解法?

答:所谓逆解法,就是先按某种方法给出一组满足全部基本方程的应力分量或位移分量,然后考察,在确定的坐标系下,对于形状和几何尺寸完全确定的物体,当其表面受什么样的面力作用或具有什么样的位移时,才能得到这组解答。

所谓的半逆解法,就是针对所要求解的问题,根据弹性体的几何形状、受力特点或材

料力学已知的初等结果,假设一部分应力分量或位移分量为已知,然后由基本方程求出其他量,把这些量合在一起来凑合已知的边界条件;或者把全部的应力分量或位移分量作为已知,然后校核这些假设的量是否满足弹性力学的基本方程和边界条件。

1、材料各向同性的含义是什么?“各向同性”在弹性力学物理方程中的表现是什么?(5分)

答:材料的各向同性假定物体的物理性质在各个方向上均相同。因此,物体的弹性常数不随方向而变化。

在弹性力学物理方程中,由于材料的各向同性,三个弹性常数,包括弹性模量E,切变模量G和泊松系数(泊松比)μ都不随方向而改变(在各个方向上相同)。

2、位移法求解的条件是什么?怎样判断一组位移分量是否为某一问题的真实位移?(5分)

答:按位移法求解时,u,v必须满足求解域内的平衡微分方程,位移边界条件和应力边界条件。

平衡微分方程、位移边界条件和(用位移表示的)应力边界条件既是求解的条件,也是校核u,v是否正确的条件。

3、试述弹性力学研究方法的特点,并比较材料力学、结构力学与弹性力学在研究内容、方法等方面的异同。(12分)

答:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立平衡微分方程、几何方程和物理方程;在边界s上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。

在研究内容方面:材料力学研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题;结构力学在材料力学基础上研究杆系结构(如 桁架、刚架等);弹性力学研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁结构等问题。

在研究方法方面:理力考虑整体的平衡(只决定整体的V运动状态);材力考虑有限体ΔV的平衡,结果是近似的;弹力考虑微分体dV 的平,结果比较精确。

4Φ4Φ4Φ222404xxyy4、常体力情况下,用应力函数表示的相容方程形式为,请问:相

容方程的作用是什么?两种解法中,哪一种解法不需要将相容方程作为基本方程?为什么?(13分)

答:(1)连续体的形变分量(和应力分量)不是相互独立的,它们之间必须满足相容方程,才能保证对应的位移分量存在,相容方程也因此成为判断弹性力学问题解答正确与否的依据之一。

(2)对于按位移求解(位移法)和按应力求解(应力法)两种方法,对弹性力学问题进行求解时位移法求解不需要将相容方程作为基本方程。

(3)(定义)按位移求解(位移法)是以位移分量为基本未知函数,从方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件,并由此解出应变分量,进而再求出形变分量和应力分量。

1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

因篇幅问题不能全部显示,请点此查看更多更全内容