您的当前位置:首页正文

20英文

2020-04-30 来源:个人技术集锦
MaterialsandStructures

DOI10.1617/s11527-013-0128-z

ORIGINALARTICLE

Cementpastecontentandwaterabsorptionofrecycledconcretecoarseaggregates

P.Belin•G.Habert•M.Thiery•N.Roussel

Received:8February2013/Accepted:14June2013ÓRILEM2013

AbstractInthispaper,wefirstshowthattheamountofresidualcementpasteinrecycledconcreteaggregates(RCA)dependsontheinitialpastecontent,onthemechanicalpropertiesoftheinitialcementpasteandonthemechanicalqualityofthetransitionzoneattheinterfacebetweentheinitialnaturalaggregatesandcementpaste.OurresultssuggestthatwaterabsorptionofRCAat24hcanbeseenasthesimplesumofthecapillaryabsorptionofbothresidualcementpasteandinitialnaturalaggregates.Theabsorptionkineticsissimilartothecapillaryabsorptionoftraditionaluncru-shedconcretesbut,ontheindustrialtimescaleofinterest,isstronglyaffectedbythesizeandconfigurationoftheresidualcementpastepatchesatthesurfaceoftheinitialnaturalaggregates.WefinallyproposeatentativeframeforaclassificationofRCAbasedonwaterabsorptionrateandwaterabsorptioncapacityat24h.KeywordsWastemanagementÁAggregateÁAbsorptionÁRecycledconcreteÁWorkability1Introduction

Concreteisthemostusedbuildingmaterialintheconstructionindustry.Itsworldproductionisesti-matedtobeabout6billionstons/year[1].

P.BelinÁG.HabertÁM.ThieryÁN.Roussel(&)

Universite

´ParisEst,IFSTTAR,Paris,Francee-mail:nicolas.roussel@ifsttar.frOnonehand,thispredominantmarketpositioninducesalargeconsumptionofnaturalresources.Forexample,threebillionstonsofaggregatesarepro-ducedeachyearinthecountriesoftheEuropeanUnion[2].Withinthisframe,theavailabilityofnaturalaggregatesourcesbecomesthereforeacrucialques-tion[3].

Ontheotherhand,theenvironmentalconcernrelatingtowastefromtheconstructionanddemolitionsector(C&Dwaste)isgrowing.Forexample,about450millionstonsofC&DwastesaregeneratedintheEuropeanUnioncountriesperyear.Theamountofinertmaterialssuchasbrickandconcreteisestimatedtobe180milliontons,whichrepresent480kg/capita[4].Mostofthesewastesaredirectlyburiedinground.Inthefollowing,wefocusonconcretewastesobtainedbyconcretecrushingafterdemolition.Wecalltheminthefollowingrecycledconcreteaggregates(RCA).Theyaremadeofcoarseparticlescontainingbothresidualcementpasteandnaturalaggregates.

IntegrationofRCAinconcretemixdesignhasthepotentialtoreducesimultaneouslytheamountofC&Dwasteburiedingroundandtopreservenaturalmineralaggregateresources.However,thispotentialcanonlybeturnedintoamarketrealityiftheaggregatesobtainedbyconcreterecyclingareusednotonlyin‘‘niche’’lowqualityproductapplicationsbutalsoindominantmarketapplicationssuchasstructuralconcrete.

ResearchonRCAstartedalmostsimultaneouslywithconcreteinvention.SaintLeger[5],forinstance,

initsconcretepatent,highlightedthefactthattheconcretefromtheSaint-MartinchannelinParis(France)hadbeenreused,afterhammercrushing,fortheproductionofnewconcretes.However,throughconcreteindustrialhistory,theuseofRCAinstruc-turalconcreteapplicationshasoftenbeenrestrictedonlytoveryspecificcases[6–11]andRCA,inpractice,aremostlyusedingranularbaseorsub-baseapplicationsforroadsandembankmentsconstruction.ThemainreasonforthatopenlooprecyclingliesinthefactthatRCAcontainsanon-neglectableamountofcementpastefromtheoriginalconcrete.Thisresidualamountoftheinitialpastedependsonthecharacteristicsoftheinitialconcrete,onthecrushingprocessandontheconsideredparticlesizeintheRCA[12–15].ThispasteisattachedtothenaturaloriginalaggregateandhasahigherporosityandlowermechanicalpropertiesthanNAandreducesthereforethequalityofRCAcomparedtoNA[12,16,17].Additionally,somechemicalcompatibilityissuesbetweentheresidualandnewpastecanberaised(relatedforexampletothepresenceofsulphatescomingfromgypsumnaturallypresentincement).Consequently,resultsfrom[11,18,19]show,forinstance,thatdensityofRCAisdecreasedby6–10%.Moreover,waterabsorptionofRCA,whenmeasuredinliterature,rangesfrom3to12%[20–24].ThesevaluesaresignificantlyhigherthanthoseofNA,whichusuallyrangefrom0.5to2.0%.AbrasionresistanceofRCAmeasuredbytheLosAngelestestcanbedecreasedbyupto70%comparedtoNA[19,24,25].TheelasticmodulusofconcretespreparedfromRCAisreportedtobe30–50%lowerthantheoneofnormalconcrete[26,27].

Severaltechnicalsolutionscanbefoundinlitera-tureallowingforanimprovementofthequalityofbothRCAandconcretespreparedfromRCA.Thefirstoneconsistsintreatingtheaggregateswithaballmillinordertoremovetheresidualcementpaste[28].ItwasshownthattheabrasionprocessismoreefficientifRCAisheatedpreviouslytothecrushing[18].ThisheatingandcrushingtechniqueisnowusedinJapantoproducehighqualityrecycledaggregatesthathavethesamepropertiesasNA[29].Notethat,inthistechnique,thefineparticlesresultingfromtheabra-sionprocesscanberecycledasrawlow-CO2materialincementplants[30].Mechanicalabrasioncanalsobereplacedeitherbychemicalabrasionwithacidsolu-tion[31]orbyultrasonicwaves[32].IthashoweverMaterialsandStructures

tobekeptinmindthattheabovetechniquesarenotenvironmentallyneutral.Forinstance,theamountofCO2generatedbytheheating/crushingprocessisthreetimeshigherthantheoneneededtoproducecrushednaturalaggregates[18].Itissuggestedin[18]thatthistechniquecouldpresentsomeenvironmentalbenefitsonlyifthefinestparticlesgeneratedbytheprocessarerecycledaslow-CO2materialsincementplants.

WithoutreducingtheamountofpasteinRCA,mechanicalpropertiesofconcretespreparedfromRCAcanalsobeimprovedbydoingasilicafumeimpregnationoftheparticles.ThistechniqueimprovestheinterfacequalitybetweenthenewcementpasteandtheRCA[32].ItisalsopossibletotreattheRCAsurfacewithasilane-typeagent[33].Finally,animprovedmixdesignprotocolofconcretespreparedfromRCAcanallowforanincreaseinmechanicalproperties[34].

AlltheabovetechniquescanimprovemechanicalpropertiesofbothRCAandconcretespreparedfromRCAbuttheydonotdealspecificallywiththedetrimentalinfluenceofthehighwaterabsorptionofRCAontherheologicalpropertiesofconcretespreparedfromRCAinthefreshstateandespeciallyonworkabilityorslumplosswithtime[26,35].

TheinfluenceofwaterabsorptiononslumplossofconcretepreparedwithRCAwasstudiedin[25]bymixingconcreteswithnaturalaggregatesandRCAatvariousmoisturestates.WithsaturatedRCA,theslumplossesoftheconcretecontainingRCAandtheonecontainingnaturalaggregatesweresimilar.With100%dryRCA,aslumplossof10cmforaninitialslumpof14cmwasmeasuredover1haftertheendofmixing.TheseresultsshowthatwaterabsorptioninRCAcontrarilytonaturalroundedaggregatesisnotinstantaneous.Itthereforeinducesworkabilityorslumplossthatcouldbenonacceptableatthebuildingsiteifthewaterabsorptionkineticsaftertheendofmixingisnotcompatiblewiththebuildingprocess.SaturationofRCAcouldappearasapotentialtechnicalsolutiontothisissue.ItshouldhoweverbekeptinmindthatsaturatingRCAwithoutanyexcessofwaterisaverycomplextaskwithintheframeofindustrialproductionofconcrete.Asallotherwatercompensationtechniquesaredifficulttoimplementintheconcreteproductionplant,absorptionkineticsofRCAseemslikeacriticalfeatureofthesematerials.Despitethis,onlyfewmeasurementsofabsorptionkineticscanbefoundinliterature.NealenandSchenk

MaterialsandStructures

[35]measuredadifferenceof20%betweentheabsorptionofRCAafter30minandafter24h.Tametal.[31]developedamethodallowingforthemeasurementofabsorptionkinetics.ThismethodconsistsinintroducingthetestedRCAinapicnometerandadjustingthewaterlevelatregulartimeintervals.Themassofwaterneededtoadjustthelevelisweightedandcorrespondtothewaterabsorption.Recently,acontinuousmeasurementofwaterabsorp-tionwasproposedin[36]basedonhydrostaticweighing.

Inthispaper,wefirstmeasuretheamountofresidualcementpastesinRCAresultingfromthecrushingofvariousconcretes.Wethenproposeanexperimentderivedfromtheexperimentalsetupin[36]allowingforthecontinuousmeasurementoftheabsorptionkineticsofRCA.Usingthistest,wemeasurethiskineticsforvariousRCA.WeshowthattwoRCAwithsimilar24habsorptionvaluescanhaveverydifferentkineticsandhavethereforeverydiffer-entconsequencesontheslumplossofconcretespreparedwiththesedryRCA.Inordertocapturethisdifference,wesuggestthatitisneededtointroduceanabsorptionkineticscharacteristictime.WemoreoverproposeasimpleandconceptualclassificationofRCA

basedonboth24habsorptionvalueandabsorptionkineticscharacteristictime.Wefinallyconcludeonthetypeofconcretethatseemstocomplywiththeaboverequirementsanditsavailabilityinexistingconcretestructures.

2Materialsandprotocols2.1Materials

2.1.1Componentsandmixdesign

InordertoproducethetestedRCA,sixdifferentconcreteswerederivedfromthecombinationoftwocrushednaturalcoarseaggregatesofsize4/10and10/20,threeroundednaturalcoarseaggregatesofsize4/10,5/12and10/20andtworoundednaturalsandsofsize0/4and0/5(cf.Table1).ACEMItypecementwasusedand,inthecaseofthehighmechanicalstrengthmaterials,acommercialpoly-carboxylatesuperplasticizerwasaddedtothemixture.Themixdesignswerechosentoreproducesometypicalconcretemixdesignsrangingfromlowstrengthhousingconcrete(C25R)tohighstrengthmodern

Table1Mixdesign,mechanicalstrengthandcrushingprocessesforthetestedRCA

C25R

Crushedcoarseaggregate10/20(kg/m3)

Crushedcoarseaggregate4/10(kg/m3)

Roundedcoarseaggregate10/20(kg/m3)

Roundedcoarseaggregate4/10(kg/m3)

Roundedcoarseaggregate5/12(kg/m3)

Roundedsand0/5(kg/m3)Roundedsand0/4(kg/m3)Cement(kg/m)Nonabsorbedwater(kg/m3)W/Cratio(-)

Super-plasticizer(kg/m)Compressivestrengthet28days(MPa)Crushingprocess

33C30C––650461––7403001910.64–32

Semi-industrial

C35R––834200––7923101580.511.2443.6Industrial

C35C636245––––7633881960.480.4846.36Industrial

C50R––509–4284064004101930.47–54.8Laboratory

C65R––734179––7295331790.3413.3167.45Industrial

C65C564217––––6765942020.3414.8569.7Industrial

––619–3884534462301820.79–24Laboratory

MaterialsandStructures

concretes(C65RandC65C).InTable1,25,30,35,50and65correspondtothetargetedmechanicalstrengthofthetestedconcreteswhereastheletterRorCcorrespondstothenatureofthenaturalaggregatesusedtopreparetheconcretes,RforRounded,CforCrushed.

2.1.2Crushingprocess

Threedifferenttypesofjawcrusherswereusedtoobtain,aftersieving,RCAfromeachconcretefromTable1.Inthisstudy,itisimportanttokeepinmindthatonlythe10/20granularclassesarestudied.OurRCAisthereforeacoarseaggregate.Oneofthecrusherwasasmalllaboratorycrusher(FritschÒ1100W).Thesecondcrusherwasaconstructionsiteportablecrusher(calledheresemi-industrial)whereasthelargestcrusherwasaroadportableplant(calledhereindustrial)(cf.Fig.1).Onlyonecrushingcyclewascarriedoutforeachconcrete[16].Aftercrushing,allRCAsampleswereprotectedfromcarbonationbycuringthemunderwaterandstoringtheminsealedtanksalongwithsodalime.Allsampleswerestoredfor6monthsbeforetesting.

2.2Measurementsofcementpastecontent

inRCAthroughchemicalanalysis

ThepurposeofthisarticleistostudytheabsorptionkineticsofRCA.SincethispropertyismainlygovernedbytheporosityofthecementpastephaseattachedtoRCA,itisthereforeofprimeimportancetobeabletocharacterizethecementpastecontentofRCA.Itcanbenotedthat,inliterature,thequantifi-cationoftheresidualmortarcontentismoreoftenmeasuredthantheresidualcementpastecontent[12,13,37].

WhereasthedeterminationoftheresidualmortarcontentinRCAisusuallydeterminedbysuccessive

Fig.1Industrialroadportablecrusher.(Left)duringcrushingprocess(right)crushingjaws

thermaltreatments(cyclesoffreezingandheating)[12,37],chemicalanalysisisgenerallycarriedoutinordertodeterminethecementpastecontent.

First,thedeterminationofthecementpastecontentintheRCArequirestheassessmentofthecementcontentintheRCA.Forthatpurpose,twohundredsgramsofdryRCAweregroundedinaringrollmillfrom10/20mmdownto315lm.Onegramoftheresultingpowderwasdilutedinanitricacidsolution(1/50).Theobtainedsolutionwasthenfilteredandanalysed.Thesolublecationicoxides(SiO2,Al2O3,TiO2,Fe2O3,CaO,MgOandMnO)wereproportionedbyatomicemissionspectrometry.Thefollowingmaintracersofcement,SiO2,Fe2O3andAl2O3,aregenerallyused[38].IthastobenotedthatCaOisnotappropriateinthecaseoflimestoneaggregatesbecauseacidalsoattackstheaggregates.SiO2isarelevanttracerofcementsinceamorphousSiO2fromaggregatesisnotdissolvedin1/50dilutednitricacidsolution.NotethatAl2O3andFe2O3canalsobeusedbutleadstohighlyvariablemeasuredcementcontentsduetothelowamountofthisoxideincementwithrespecttoSiO2.MoreoverSiO2hastobeavoidedasatracerifthecementitiousmatrixiscarbonatedsinceinthatcaseSiO2fromcarbonatedC–S–H(silicagel)cannotbeextractedbya1/50nitricacidsolution[39–41].InthisstudyallsampleswereprotectedfromcarbonationandSiO2wasthereforeusedtodeterminethecementcontentMcoftheRCAfromthemassofSiO2pergramofRCAaccordingtoMc¼MSiO2=%SiO2,whereMSiO2istheSiO2contentintheRCAdeterminedbyatomicemissionspectrometryand%SiO2isthemassfractionofSiO2containedinthecement.

ThecementpastecontentintheRCAMPcanthenbecalculatedfromthecementcontentusingthefollowingequationMP¼Mcð1þ0:25aÞ

ð1Þ

MaterialsandStructures

whereaisthedegreeofhydrationofthecementintheresidualcementpaste.0.25standsfortheamountofwater,whichischemicallyboundtothecement.acorrespondstoalongtermdegreeofhydration(atleast28days)inthecaseofwatercuringconditions.acanbeinferredaccordingtothefollowingempiricalequation[42]:a¼1ÀeÀ3:3W

C:

ð2Þ

Inthepresentresearch,wechoosetoexpressourresultswitharelativecementpastecontentMP/MP0withrespecttothecementpastecontentoftheoriginalconcreteMP0,whichcaneasilybecomputedfromtheconcretemixdesign:M1þ0:25a

P0¼

1þWCþAð3Þ

CwhereAstandsfortheaggregatescontentoftheoriginalconcrete.Accordingly,MP/MP0canbewrittenas:

MPM¼M󰀂WA

󰀃

P0

c1þCþC:ð4Þ

Itisinterestingtonotethatthehydrationdegreeof

thecementplaysnoroleinthepreviousequation.Asaconsequence,therelativecementpastecontentdoesnotdependontheaboveassumptionsonthedegreeofhydration.Inthefollowing,wewillalsoassesstheporosityofthecementpaste.Thisparameterisestimatedbyusingthesimplerelationsbelow[43].TheinitialporosityofthefreshcementpasteP0canbecomputedfromthewater-to-cementratio:

󰀂qW󰀃

À1

P0¼1À1þcCð5Þ

whereqcisthecementpowderspecificgravity.

TheporosityofthepastePforadegreeofhydrationaisthengivenby[43]

P¼P󰀂25aC

󰀃

01À0:W:ð6Þ

2.3Absorptionkineticsmeasurement2.3.1Pre-treatmentoftheaggregates

Apre-treatmentwascarriedoutinordertodrytheaggregatestoareferencestatebeforesubmittingthem

tothewaterabsorptiontest.TheRCAwereheatedat45°Cundervacuum.Thisprocedurewassimilartothedryingmethodusedtoprepareconcretesamplesformercuryintrusionporosimetryin[44].Inthispaper,thispre-treatmentwascarriedoutatanabsolutepressureintherangeof30–50mbar,withsilicagelandsodalimetoavoidcarbonationofthecementitiousmatrix.Thepre-treatmentlasteduntilmassequilib-riumwasreached(i.e.thedailymasslosswaslowerthan0.05%).Beforetheabsorptiontest,thesampleswerecooled1dayatroomtemperatureandatmo-sphericpressureinadessicatorwithsilicagelandsodalime.Althoughthispre-treatmentwaspreferredtohighertemperatureovendrying(classically105°C)inordertoreducethesamplesalteration(dehydration,macro-cracking,etc.),itstillhastobenotedthatthispre-treatmentmayhaveconsequencesontherecycledaggregates(forexample,somemicro-crackswerereportedin[45]).

2.3.2Waterabsorptionmeasurement

Aglassjarwasfirstimmersedina22°Ctemperatureregulatedbathuntiltemperatureequilibriumwasreached(i.e.nosignificantmasschangeofthefullyimmersedemptyjarwasmeasured).Thetestedaggregatesurfacewascleanedfromfineparticleswithcompressedairandthesamplemassm0wasmeasured(Fig.2).

Thejar,partiallyfilledwithdistilledwater,waswithdrawnfromthetemperatureregulatedbathandtheaggregateswereintroducedintothejarattimet=0.Thesamplequantitywasequivalenttooneortwolayersofaggregates(around150ginthiswork)inordertoallowairbubblestoeasilycirculatethrough

Fig.2Waterabsorptionkineticsmeasurementsetup

MaterialsandStructures

thesample.Theaggregateswerethenagitatedtoremoveanytrappedairbubbles.Thejarwasthenhungtoabalanceconnectedtoadatarecordingsystemandimmersedinthetemperature-regulatedbath(Fig.1).TherecordingofthemassofthejarcontainingthesampleM(t)wasstartedapproximately70saftertheintroductionoftheaggregatesintowater.Asaconsequence,theinitialabsorptioncannotbemea-suredandcanonlybededucedfromtheevolutionbetween70sand24halongwithabsolutevalueofthewaterabsorptionat24h.However,beingabletomeasurewaterabsorptionafter70smeansthatwehaveaccesstowhatshallhappeninpracticemoreorlessaftertheendofthemixingprocess.Theevolutionofthemasswasthenrecordedfor24h.The24hmeasurementofthemassofthejarcontainingthesampleisnotedhereM24.

Attheendofthetest,theaggregateswereextractedfromwater,driedwithabsorbentclothsuntilallvisiblefilmsofwaterwereremovedbuttheaggregatestillhadadampappearance[46].Themassofthesamplem24after24himmersionwasthenmeasured.Itcanbenotedthatthemoisturestatecriterionusedhereisidenticaltotheoneusedforthesaturatedsurfacedriedmethodforwaterabsorptionmeasurement[47].Asaconsequence,itcanbeestimatedthattherelativemeasurementerrorduetotheoperatorevaluationofthemoisturestateshouldbesimilarandaround5%[47].

Fig.3ResidualcementpastevolumefractionintheRCAasafunctionoftheW/Cratioforthevariousconcretesandjawcrushersstudiedinthispaper

Assumingthatthereisnovolumechangeoftheaggregates,themassofabsorbedwaterDmw(t)wasthencalculatedfrom:

DmwðtÞ¼m24Àm0ÀðM24ÀMðtÞÞ:

ð7Þ

AndthewaterabsorptionofthetestedRCAwasdefinedas:AdsðtÞ¼

DmwðtÞ

:m0

ð8Þ

Thistestallowsforthecontinuousmeasurementofwaterabsorptionofcoarseaggregates(diameterlargerthan8mm)from70saftertheintroductionoftheaggregatesinwaterupto24h.Itcanbenotedthat,whenusedinthecaseofsmalleraggregates(i.e.lowerthan8mm),airbubblestrappinginthesamplepreventedfromacontinuousmeasurementandfre-quentjolting,abletoperturbthecontinuousmassmeasurement,wasnecessary.

3Experimentalresultsandanalysis3.1PastecontentintheRCA

ThemeasuredrawdataofpastecontentfromchemicalanalysisaregatheredinFig.3asafunctionoftheW/Cratio.Unsurprisingly,theresidualpastecontentintheRCAdependsonthepropertiesofthecement

MaterialsandStructures

paste.Themeasurementofmechanicalpropertiesofpurecementpastesbeingadelicateprocess,wedecideheretogodeeperintheunderstandingofthecrushingprocessbyevaluatingtheporosityofthepaste,whichcanbeassociatedtobothfracturestrengthandelasticmodulus.WethenplotinFig.4therelativeresidualcementpastecontent(i.e.theratiobetweentheresidualcementpastemassproportionandtheinitialcementpastemassproportionintheoriginalconcrete)asafunctionoftheporosityoftheinitialpaste.

WecanseeinFig.4thattherelativeresidualcementpastecontentdecreaseswiththeporosityoftheinitialpaste.Allresultsobtainedinthisstudyseemtogatheronamastercurve,theonlydeviationfromwhichappearsinthecaseoftheconcretespreparedwithnaturalcrushedaggregates,forwhichthecementcontentintheRCAisequaltothecementcontentintheoriginalconcrete.

Ourresultssuggestthereforethatthejawcrushertype(laboratory,semi-industrialorindustrial)doesnothaveanymajorinfluenceontherelativeresidualcementpastecontent.ItcanhoweverbekeptinmindthatonlyonecrushingcyclewasusedheretoproducetheRCA.Additionalcrushingcyclescoulddecreasetheresidualpastecontent[12].However,fromanindustrialpointofview,thiswouldgenerateadditionaleconomicandenvironmentalcosts[12].

Ourresultsmoreoversuggestthatthemainparam-etersdictatingtherelativeresidualpastecontentare

Fig.4RelativeresidualcementpastecontentintheRCAasafunctionof

porosityoftheinitialcementpasteforthevarious

concretesandjawcrushersstudiedinthispaper

themechanicalpropertiesoftheinitialcementpaste(i.e.itsporosity)andthenatureoftheaggregates(i.e.roundedorcrushed).Fromamoregeneralpointofview,itcanbeexpectedthatitisthemechanicalqualityoftheinterfacialtransitionzone(ITZ)betweentheinitialnaturalaggregatesandtheinitialcementpastethatshallmatter.Fromamechanicalpointofview,itwasshownthatsmoothnaturalroundedaggregatesdisplayweakerITZthannaturalcrushedaggregatesalthough,forthelatter,themechanicalpropertiesoftheinterfaceshowedstrongdependencyontheirroughness,theirproductionprocessandtheirchemicalcomposition[48].ThisisillustratedinFig.5,inwhichtheRCAfromC35R(highporositypasteandnaturalroundedaggregates)andC65C(lowporositypasteandnaturalcrushedaggregates)areshown.ItcanbeseenthatthecrushingprocessinducesafractureattheinterfacebetweentheaggregateandthepasteinthecaseofC35Rasthisinterfaceismechanicallyweakerthanthepaste.Itcanbenotedthatthesizeoftheresidualcementpastepatchesatthesurfaceofthegrainsissmallcomparedtothesizeoftheinitialnaturalaggregates.Mostcementandmortarparticlesresultingfromthecrushingaresmallerthan10mmandarethereforenotpresentintheRCAstudiedhere.Inindustrialpractice,crushingthistypeofconcreteshouldallowforapartialseparationoftheresidualcementphasefromtheinitialcoarsenaturalaggregatewithouttheneedforaspecifictreatment

MaterialsandStructures

suchastheonesdescribedintheintroductionsection.InthecaseofC65C(Fig.5right),thefractureoccursinthepasteitselfandaggregatesofcentimetresizecomposedonlyofamortarphasecanbefound.Inthiscase,itcanbenotedthatthevalueofthedensityoftheRCAisclosetothevalueofthedensityoftheinitialconcrete.Thecrushingprocessonlybreakstheconcreteinhomogeneousfragmentswithoutanyseparationofthecomponents.

Fromtheaboveresults,itseemsthereforepossibletoproduceRCAthatonlycontainsvolumefractionsintheorderofseveral%oftheinitialcementpaste(cf.Fig.3)aslongastheoriginalconcreteispreparedfromroundednaturalaggregates(i.e.weakITZ)andfromaninitialpastewithahighwatertocementratio(i.e.lowmechanicalproperties).3.2Waterabsorptionat24hours

WeplotinFig.6thewaterabsorptionratioasafunctionoftimeforthevariousRCAtestedherealongwiththeabsorptionofthenaturalroundedandcrushedaggregates,fromwhichtheRCAwereprepared.ItcanbeseeninFig.6that,formostmaterialsstudiedhere,aplateauisreachedat24horevenbeforeinthewaterabsorption.Itcanbeexpectedthat,whentheRCAreachsaturation,theporosityofboththeinitialnaturalaggregatesandtheresidualcementpasteisfilledwithwater.WeplotthereforeinFig.7the24hwaterabsorptionasafunctionoftheassessedporosityofthepastecontainedintheRCA(i.e.the

productoftheintrinsicporosityofthepastecomputedfromEq.(5)andtheresidualpastevolumefraction).OurresultssuggestthatwaterabsorptionofRCAat24hcanbeseenasthesimplesumofthecapillaryabsorptionofboththeresidualcementpasteandtheinitialnaturalaggregates.Thissumisstronglyaffectedbytheamountofresidualcementpaste,whichpondersthehighwaterabsorptionofthepaste.However,forhighRCAporosity,24habsorptionbecomeslowerthantheassessedporosityoftheRCAasshowninFig.8.Thiscouldbeexplainedbythefactthat24hisnotsufficienttoreachthefullsaturationoftheporosityoftheseRCAasmeasuredin[36].

Thismeansthat,similarlyasintheprevioussection,itseemspossibletoproducecoarseRCAwithlow24hwaterabsorptionaslongastheoriginalconcreteispreparedfromroundednaturalaggregatesandfromaninitialpastewithahighwatertocementratio.Thesetwofeatureslimittheamountofresidualcementpasteandthereforethewaterabsorption.Theporosityoftheresidualpastewillbehighbutitwillbetemperedbythelowamountofresidualpasteduetotheweakmechan-icalinterfacebetweentheaggregateandthepasteandtotheseparatingeffectofthecrushingprocess.3.3Waterabsorptionkinetics

ItcanbenotedfromFig.6thatthetestedRCAsdisplayverydifferentabsorptionkineticsindependentoftheirwaterabsorptionat24h.Asaconsequence,theamountsofwaterabsorbedduringmixingor

Fig.5Fracturetypefor(left)C35R(highporositypasteandnaturalroundedaggregates)and(right)C65C(lowporositypasteandnaturalcrushedaggregates)

MaterialsandStructuresFig.6WaterabsorptionasafunctionoftimeforthevariousRCA8%C25R7%C30RWater absorption (%)6%5%4%3%2%1%C35RC35CC50RC65RC65CNatural crushed aggregatesNatural rounded aggregates0%110100100010000100000Time (s)Fig.7Waterabsorptionat24hasafunctionoftheassessedporosityoftheresidualpaste9%24 hours absorptionNatural rounded aggregates based RCANatural rounded aggregates8%7%Natural crushed aggregates based RCANatural crushed aggregates6%5%4%3%2%1%Total paste porosity (-)0%-2%-1%0%1%2%3%4%5%6%7%8%betweenmixingandcastingshallstronglydiffer.Itcanthereforebeexpectedthat,fromapracticalpointofview,workabilitylossduetowaterabsorptionwillalsobedifferentfromoneRCAtoanother.Weassumeherethatwaterabsorptionduringconcretemixingissimilartothewaterabsorptionofaggregatesimmersedindistilledwater.Wethereforeneglectanypotentialinfluenceofthewaterbindingcapacityofthecementgrains.ThisbindingcapacityfindsitsorigininthevanderWaalsinteractionsbetweencementgrains.Theenergylevelperunitvolumeoftheseinteractions(inJ/m3orinPa)isdimensionallycorrelatedtotheyieldstressofthepaste(i.e.thecriticalstressabovewhichthematerialflows,which

MaterialsandStructures

Fig.8Waterabsorptionat24hasafunctionoftheassessedporosityoftheRCA.Thedottedlineisthey=xplot10%9%8%7%6%5%4%3%2%1%24 hours absorptionTotal RCA porosity (-)0%0%1%2%3%4%5%6%7%8%9%10%11%correspondstotheenergyperunitvolumeneededtocanceltheseinteractions).Theyieldstressoftheconstitutivecementpastevariesbetweenfluidcon-cretessuchasself-compactingconcretesandfirmconcretes.However,itispossibletoconsiderthatitsorderofmagnitudeisbetween10and100Pa.Ontheotherhandthemagnitudeofthecapillarypressureattheoriginofwaterabsorptionisintheorderofc/rwherecisthesurfacetensionofwaterandristhecharacteristicsizeoftheRCAporosity.Ifweassumethatthischaracteristicsizeisintheorderofonemicrometre,thecapillarypressurecompetingwiththebindingcapacityofthecementgrainsshallbeintheorderof105Pa.ItisfarhigherthanthevanderWaalsenergylevelperunitvolumeandwaterabsorptionshallnotthereforebesloweddownbythebindingcapacityofthecementgrains.Itcanhoweverbekeptinmindthat,locally,waterabsorptioncouldincreasethesolidconcentrationatthesurfaceofthegrainsandthereforethelocalvanderWaalsbindingenergy.ThisincreaseinconcentrationwouldmoreoverpromotethejammingoffineparticlesintheRCAporositydecreasingthereforewaterabsorption.Wehoweverassumeinthefollowingthatthemeasuredwater

absorptionisrepresentativeofthewaterabsorptionoftheRCAwhentheyareimmersedinacementpaste.Ifweconsiderthat,throughtheabsorptionprocess,waterinvadestheporosityofanhomogeneousmate-rialofporosityp(i.e.thepatchesofcementpaste),themassofwaterabsorbedatatimetM(t)shouldbeproportionalto[49]:

pffi3

MðtÞ%p2fðs;rÞtð9Þwheref(s,r)isafunctionofthetortuosityandoftheporesizedistribution.Asaconsequence,acharacter-isticabsorptiontimeshouldbeproportionaltoTabs%

1

pÀ3:fðs;rÞ

ð10Þ

Weneglectherethewaterabsorptionoftheinitialnaturalaggregates.WemoreoverdefinearbitrarilyacharacteristicabsorptiontimeTabsasthetimeneededtoreach80%ofthefinalabsorptionat24h.WeplotinFig.9thischaracteristicabsorptiontimeasafunctionoftheintrinsicporosity(asopposedtothetotalporosityoftheresidualpaste)computedfromEq.(5)alongwithafittedfunctionofp-3.Thegood

MaterialsandStructures

agreementobtainedsuggeststhattheabovesimpledimensionalapproachisabletocapturethemeasuredwaterabsorptionkineticsand,therefore,thatwaterabsorptionkineticsofRCAisdictatedbythesamephysicalparameters(i.e.thecharacteristicsofthecapillaryporosity)asinotherporousbuildingmate-rials(cementpaste,mortar,bricks,etc.)[50].

Itishoweverworthnotingthat,inthecaseofthematerialsstudiedhere,theinfluenceoftheW/Cratioonporesizedistributionandtortuosityoftheresidualpasteseemstobeneglectable,asasimplep-3functionseemstobeabletofitourdata.Thisisanintriguingfeatureandcouldsuggestthatsomemicro-cracksduetothecrushingprocess,whichwoulddependonpasteporosityandlocaldefects,mayplayaroleonkinetics.Thisnetworkofmicro-crackswouldthenbypassthecementitiousmatrixanddisplaythesametortuosityandsizedistributionindependentoftheW/Cratio.Thisexplanationwouldhoweverbeincontradictiontothefactthatthetotalamountofabsorbedwaterisequaltothesumoftheassessedporosityofthepaste(withoutmicro-cracks)andporosityoftheinitialnaturalaggregates.

Fromapracticalpointofview,thismeansthatlowporosityconcretes(i.e.highmechanicalstrength)shoulddisplayslowwaterabsorption.Moreover,asshownabove,thehighamountofresidualcementpasteintheseconcretesshouldallowfortheabsorp-tionoflargeamountofwaterintheRCAaftermixingandbeforecastingthatcouldstronglyaffectwork-abilityloss.

Ithashowevertobenotedthattheaboveapproachreachesalimitatshorttimescales.WemeasuredthewaterabsorptionkineticsoftheconstitutivecementpasteofC25RandC50R(cf.Fig.10)alongwiththeconstitutivenaturalaggregates.Themeasurementsonthecementpasteswerecarriedoutonsieved10/20mmcrushedparticles.

FromthedatainFig.10andthemeasuredresidualamountofpaste,wecalculatethewaterabsorptionasafunctionoftimebyaddingtherespectivecontributionofthecomponents.TheresultsareplottedinFig.11.Althoughthekineticsonlargetimescalesiscorrectlypredicted,atshorttimescales,thereexistsastrongdiscrepancybetweenthecalculatedandmeasuredvalues.Wesuggestthatthisdiscrepancyisduetothecharacteristicsizeofthecementpasteelements.Inthetestedcrushedcementpaste,theaveragesizeoftheparticlesisbetween10and20mmwhereas,inthecrushedRCAfromC25RandC50R,thecementpatchesatthesurfaceofthegrainsarefarsmallerandthinner.Onthetimescaleofinterest[i.e.betweentheendofmixing(100s)andendofcasting(acouplehours)],thekineticsseemsthereforetobe

Fig.9Waterabsorptioncharacteristictimeasafunctionoftheintrinsicporosityoftheresidualcementpaste10000Characteristic time for 80% final absorption (s)1000100100.10.150.20.250.30.350.40.450.50.550.6Intrinsic paste porosity (-)MaterialsandStructures

Fig.10WaterabsorptionasafunctionoftimefortheconstitutivecementpastesandconstitutiveaggregatesofC25RandC50RWater absorption (%)100%10%constitutive paste of C25Rconstitutive paste of C50R1%constitutive natural rounded aggregates0%10100100010000100000Time (s)Fig.11WaterabsorptionasafunctionoftimeforC25RandC50R.Thecontinuouslinesarethepredictedvaluesfromthewaterabsorptionofeachcomponent5.0%4.5%4.0%3.5%Absorption (%)3.0%2.5%2.0%1.5%1.0%0.5%0.0%101001000100001000001000000C25RC50RTime (s)stronglyaffectedbythesizeandconfigurationoftheresidualcementpastepatchesatthesurfaceoftheinitialnaturalaggregates.Thisdistributionishoweverdifficulttopredictand,inordertopredictworkabil-ityloss,directmeasurementofwaterabsorptionkineticsseemsunavoidableforthequalificationofagivenRCA.

3.4Aframeforapracticalwaterabsorption

classificationofRCAInpractice,itisnotacharacteristictimethatmattersbuttheamountofwaterthatisabsorbedaftertheendofthemixingprocessandbeforecasting.Thisamountofabsorbedwaterwillbeattheoriginofthe

MaterialsandStructuresFig.12ClassificationofRCAasafunctionoftheir24hwaterabsorptionandtheirbetweenmixingandcastingabsorptionrate

workabilityorslumploss.Weconsiderherethatatypicalmixingprocesslastsintheorderof100sandthatcastingtypicallyoccurs1haftermixing.Duringthisperiod,itcanbeestimatedthatanacceptablewatercontentvariationshouldstaylowerthantheuncer-taintyonthewaterdosageinconcretemixingplant(i.e.10–15L).Theamountofcoarseaggregatesinatypicalconcretebeingoftheorderof1,000kg/m3,thismeansthatthewaterabsorptionbetweentheendofmixingandcastingshouldnotbehigherthan1.5%.Itcanmoreoverbeexpectedthathigh24habsorptionvaluesarerepresentativeofahighamountofporouscementpaste.Thisshoulddecreasethemechanicalpropertiesoftheaggregatepreventingtheproductionofrecycledconcreteswithadequatehardenedmechanicalproperties.Thelimitvalueforthe24habsorptionisstilltobediscussed.However,alimitvaluearound6%canbeextracted

´nchezdeJuanfromthestateoftheartpaperofSa

´rrez[12].ThisvaluecanbecomparedtoandGutie

the10%limitvalueintheRILEMrecommenda-tions[51]andtothe7%limitvalueinJapaneseindustrialpractice[52].

WegathertheaboverequirementsinFig.12.TheRCAcomplyingwiththeserequirementsinourstudyareallbasedonroundednaturalaggregates(i.e.weakITZ).TheRCA,whichdisplaysthebestproperties,isC25R(i.e.aconcretetypicaloflowstrengthhousingconcretes).Itispossibletoextrap-olatefromFig.12thatthereshallexisttwotypesof

idealsourceofRCAconcerningwaterabsorption.Thefirstonewouldbe,asintheC25Rcase,aconcretepreparedwithhighwatertocementratioandnaturalroundedaggregates.CrushingshallinthiscaseleadstotheproductionofRCAcontainingaverylowamountofresidualcementpaste.Aswaterabsorptionseemstoresultfromtheaddedcontributionofthewaterabsorptionoftheresidualpasteandtheinitialnaturalaggregates,thewaterabsorptionandwaterabsorptionkineticsofsuchRCAshallbeveryclosetowaterabsorptionandwaterabsorptionkineticsoftheinitialnaturalaggregates.Thesecondidealsourcewouldbeaconcretewithalowwatertocementratio.CrushingshallleadinthiscasetotheproductionofRCAcontaininganamountofresidualpasteclosetheamountofcementpasteintheuncrushedconcretebutthispasteporosityshallbesufficientlylowtoleadtotolerablewaterabsorption.Moreover,atlowW/Cratio,itcanbeexpectedthattheveryfineporositymayleadtoabsorptionkineticsslowenoughtooccurmainlyaftersetting.

4Conclusion

Inthispaper,wefirstshowedthattheamountofresidualcementpasteinRCAmainlydependsonthepastecontentoftheinitialconcrete,onthemechanicalpropertiesoftheinitialcementpaste(i.e.itsporosity)

andonthemechanicalqualityoftheinterfacebetweentheinitialnaturalaggregatesandcementpaste.

WethenmeasuredthewaterabsorptionkineticsofRCAwithanewlydevelopedsimpletest.OurresultssuggestthatwaterabsorptionofRCAat24hcanbeseenasthesimplesumofthecapillaryabsorptionofbothresidualcementpasteandinitialnaturalaggregates.

WemoreovershowedthattwoRCAwithsimilar24habsorptionvaluescanhaveverydifferentabsorptionkineticsand,therefore,verydifferentconsequencesontheslumplossofconcretepreparedwiththesedryRCA.Thiskineticsseemstostronglydependontheporosityofthepastesimilarlytocapillaryabsorptionoftraditionaluncrushedcon-cretes.Onthetimescaleofinterest[i.e.betweentheendofmixing(100s)andendofcasting(acouplehours)],thekineticsisalsostronglyaffectedbythesizeandconfigurationoftheresidualcementpastepatchesatthesurfaceoftheinitialnaturalaggregates.WefinallyproposedatentativeclassificationofRCAbasedonwaterabsorptionrateandwaterabsorptionat24h.

Itcanbekeptinmindthat,ifalowandfastabsorptionistargeted,thebestrawmaterialstocrushareconcreteswithnaturalroundedaggregatesandhighW/Cratio.ThehighW/Cratioandtheweakpasteaggregateinterfaceshouldensurethattheresidualpastevolumeiskeptataminimumthroughthecrushingprocess.ThiswillnotonlyreducethefinalabsorptionoftheRCAbutalsoimproveitsmechanicalpropertiesallowingfortheproductionofstandardmechanicalstrengthsandelasticmodulusconcretes.Thehighwatertocementratio(i.e.highporosity)willalsoensurethatwaterabsorptionisfastandthatmostofitoccursthroughthemixingprocessoftherecycledconcrete.Workabilitylossandrheologyissuesshallthereforebereduced.

Itisfinallyinterestingtonotethattheserequire-mentscorrespondtothehousingconcretesthatweremassivelyusedinEuropeaftertheSecondWorldWar.Thishugepotentialdepositshallbeavailableinthenext20yearsasamineralresourcefornewconcreteproduction.

AcknowledgmentsTheauthorswouldliketothankT.SedranandF.deLarrardforprovidingsomeofthecrushedaggregates.SupportfromtheAgenceNationaledelaRecherche(ANR)isalsoacknowledged(GrantNo.ANR-09-JCJC-0074).

MaterialsandStructures

References

1.DamtoftJ,LukasikJ,HerfortD,SorrentinoD,GartnerE(2008)Sustainabledevelopmentandclimatechangeini-tiatives.CemConcrRes38:115–127

2.EuropeanEnvironmentAgency(2008)Effectivenessofenvironmentaltaxesandchargesformanagingsand,gravelandrockextractioninselectedEUcountries.EEAReportNo.2/2008.SchultzGrafisk,Copenhagen

3.HabertG,BouzidiY,ChenC,JullienA(2010)Develop-mentofadepletionindicatorfornaturalresourcesusedinconcrete.ResourConservRecycl54:364–367

4.RaoA,JhaKN,MisraS(2007)Useofaggregatesfromrecycledconstructionanddemolitionwasteinconcrete.ResourConservRecycl50:71–81

5.Saint-LegerD(1827)Brevetd’inventionetdeperfec-tionnementremis`a

M.SaintLe´gersurl’autorisationspe´cialedeM.Vicat.ArchivesnationaleF13959,25May1827

6.NewmanAJ(1946)Theutilisationofbrickrubblefromdemolishedsheltersasaggregatesforconcrete.JInstMunicEng73:113–121

7.GrafO(1973)UberZiegelsplittbeton,SandsteinbetonundTrummerschuttbeton.DieBauwirtschaft1948(Germany).(Crushedbrickconcrete,sandstoneconcreteandrubbleconcrete,Trans,No.73-1,January1973).U.S.ArmyEngineerWaterwaysExperimentalStation,C.E.Vicksburg8.BuckAD(1973)Recycledconcrete,highwayresearchrecord.HighwayResearchBoard,Washington

9.NixonPJ(1978)Recycledconcreteasanaggregateforconcrete—areview.MaterStruct11:371–378

10.dePawC(1983)Recyclingofdemolishedconcrete.

BuildingResearchInstitute,Brussels

11.BernierG(1984)Lesbe

´tonsdede´molitionsourcedegranulats.BullIntAssocEngGeol30:333–337

12.deJuanMS,Gutie

´rrezPA(2009)Studyontheinfluenceofattachedmortarcontentonthepropertiesofrecycledcon-creteaggregate.ConstrBuildMater23:872–877

13.AbbasA,FathifazlG,FournierB,IsgorOB,ZavadilR,

RazaqpurAG,FooS(2009)Quantificationoftheresidualmortarcontentinrecycledconcreteaggregatesbyimageanalysis.MaterCharact60:716–728

14.AbbasA,FathifazlG,IsgorOB,RazaqpurAG,FournierB,

FooS(2009)Durabilityofrecycledaggregateconcretedesignedwithequivalentmortarvolumemethod.CemConcrCompos31:555–563

15.AgrelaF,Sa

´nchezdeJuanM,AyusoJ,GeraldesVL,Jime

´nezJR(2011)Limitingpropertiesinthecharacterisa-tionofmixedrecycledaggregatesforuseinthemanufactureofconcrete.ConstrBuildMater25:3950–3955

16.EtxeberriaM,Va

´zquezE,Marı´A,BarraM(2007)Influenceofamountofrecycledcoarseaggregatesandproductionprocessonpropertiesofrecycledaggregateconcrete.CemConcrRes37:735–742

17.BarradeOliveiraM,VazquezE(1996)Theinfluenceof

retainedmoistureinaggregatesfromrecyclingonthepropertiesofnewhardenedconcrete.WasteManag16:113–117

18.ShimaH,TateyashikiH,MatsuhashiR,YoshidaY(2005)

Anadvancedconcreterecyclingtechnologyandits

MaterialsandStructures

applicabilityassessmentthroughinput–outputanalysis.JAdvConcrTechnol3:53–67

19.PoonCS,LamCS(2008)Theeffectofaggregate-to-cementratioandtypesofaggregatesonpropertiesofpre-castconcreteblocks.CemConcrCompos30:283–28920.Go

´mez-Sobero´nJMV(2002)Porosityofrecycledconcretewithsubstitutionofrecycledconcreteaggregate:anexper-imentalstudy.CemConcrRes32:1301–1311

21.KatzA(2003)Propertiesofconcretemadewithrecycledaggregatefrompartiallyhydratedoldconcrete.CemConcrRes33:703–711

22.XiaoJ,LiJ,ZhangC(2005)Mechanicalpropertiesofrecycledaggregateconcreteunderuniaxialloading.CemConcrRes35:1187–1194

23.EvangelistaL,BritoJ(2007)Mechanicalbehaviourofconcretemadewithfinerecycledconcreteaggregate.CemConcrCompos29:397–401

24.

Lo

´pez-GayarreF,SernaS,Domingo-CaboA,Serrano-Lo

´pezMA,Lo´pez-ColinaC(2009)Influenceofrecycledaggregatequalityandproportioningcriteriaonrecycledconcreteproperties.WasteManag(Oxford)29:3022–302825.

PoonCS,ShuiZH,LamL,FokH,KouSC(2004)Influenceofmoisturestatesofnaturalandrecycledaggregatesontheslumpandcompressivestrengthofconcrete.CemConcrRes34:31–36

26.

BarradeOliveiraM,VasquezE(1996)Theinfluenceofretainedmoistureinaggregatesfromrecyclingonthepropertiesofnewhardenedconcrete.WastesManag16:113–117

27.AjdukiewiczA,KliszczewiczA(2002)Influenceofrecy-cledaggregatesonmechanicalpropertiesofHS/HPC.CementConcrCompos24:269–279

28.

MontgomeryDG(1998)Workabilityandcompressivestrengthpropertiesofconcretecontainingrecycledconcreteaggregate.In:DhirRK,HendersonNA,LimbachiyaMC(eds)Proceedingssustainableconstruction:useofrecycledconcreteaggregate,ThomasTelford,London,pp289–29629.TomosawaF,NoguchiT,TamuraM(2005)Thewaycon-creterecyclingshouldbe.JAdvConcTechnol3:3–1630.GalbenisCT,TsimasS(2006)Useofconstructionanddemolitionwastesasrawmaterialsincementclinkerpro-duction.ChinaParticuol4:83–85

31.TamVWY,GaoXF,TamCM,ChanCH(2008)Newapproachinmeasuringwaterabsorptionofrecycledaggregates.ConstrBuildMater22:364–369

32.LinßE,MuellerA(2004)High-performancesonicimpul-ses—analternativemethodforprocessingofconcrete.IntJMinerProcess74:199–208

33.

TsujinoM,NoguchiT,TamuraM,KanematsuM,Maruy-amaI(2007)Applicationofconventionallyrecycledcoarseaggregatestoconcretestructurebysurfacemodificationtreatment.JAdvConcrTechnol5:13–25

34.

Gonzalez-FonteboaB,Martinez-AbellaF(2008)Concreteswithaggregatesfromdemolitionwasteandsilicafume,materialsandmechanicalproperties.BuildEnviron43:429–437

35.

NealenA,SchenkS(1998)Theinfluenceofrecycledaggregatecoremoistureonfreshlymixedandhardenedconcretesproperties.DarmstConcrAnnuJ13

36.DjerbiTegguerA(2012)Determiningthewaterabsorption

ofrecycledaggregatesutilizinghydrostaticweighingapproach.ConstrBuildMater27:112–116

37.AbbasA,FathifazlG,IsgorOB,RazaqpurAG,FournierB,

FooS(2008)Proposedmethodfordeterminingtheresidualmortarcontentofrecycledconcreteaggregates.JASTMInt5:12

38.VillainG,ThieryM,PlatretGe

´rard(2007)Measurementmethodsofcarbonationprofilesinconcrete:thermogravi-metry,chemicalanalysisandgammadensimetry.CemConcrRes37:1182–1192

39.SlegersPA,PaulG(1976)Carbonationofthehydration

productsoftricalciumsilicate.CemConcrRes6(3):381–388

40.SuzukiK,NishikawaT,ItoS(1985)Formationandcar-bonationofC–S–Hinwater.CemConcrRes15(2):213–22441.KobayashiK,SuzukiK,UnoY(1994)Carbonationof

concretestructuresanddecompositionofCSH.CemConcrRes24(1):55–61

42.WallerV,d’Aloı

¨aL,CussighF,LecruxS(2004)Usingthematuritymethodinconcretecrackingcontrolatearlyages.CemConcrCompos26(5):589–599

43.DelmiMMY,Aı

¨t-MokhtarA,AmiriO(2006)Modellingthecoupledevolutionofhydrationandporosityofcementbasedmaterials.ConstrBuildMater20:504–514

44.Baroghel-BounyV,ChaussadentT,CroquetteG,DivetL,

GawsewitchJ,GodinJ,HenryD,PlatretG,VillainG(2002)

Caracte

´ristiquesmicrostructuralesetproprie´te´srelativesa`ladurabilite

´desbe´tons—Me´thodesdemesureetd’essaisdelaboratoire—Me

´thodesd’essaino.58,TechniquesetMe

´thodesdesLPC,LCPC,Fe´vrier2002,88p45.AmmoucheA.,Baroghel-BounyV(2008)De

´gradationsge

´ne´re´esparlestraitementspre´alablesauxmesuresparintrusiondemercureetdeperme

´abilite´auxgaz.InDurab-ilite

´dube´tonarme´etdesesconstituants:maıˆtriseetap-procheperformantielle,ERLPCOA62,pp197–209

46.EN1097-6(2006)Testsformechanicalandphysical

propertiesofaggregates—part6:determinationofparticledensityandwaterabsorption

47.BritishStandardsBS812-2(1995)Testingaggregates.

Methodsfordeterminationofdensity,BritishStandardsInstitution,London

48.deLarrardF(1999)Concretemixtureproportioning.E&

FNSpon,London

49.HallC,HoffWD(2011)Watertransportinbrick,stoneand

concrete,2ndedn.Taylor&Francis,LondonandNewYork50.HallC(1989)Watersorptivityofmortarsandconcretes:a

review.MagConcrRes41:147

51.RILEMRecommendation(1994)121-DRGGuidancefor

demolitionandreuseofconcreteandmasonry.Specifica-tionsforconcretewithrecycleaggregates.JMaterStruct27:557–559

52.KasaiJ,KasaiY(1993)Guidelinesandthepresentstateof

thereuseofdemolishedconcreteinJapan.In:LauritzenEK(ed)Demolitionandreuseofconcreteandmasonry.Guidelinesfordemolitionandreuseofconcreteandmasonry.RILEM,Odense,pp93–104

因篇幅问题不能全部显示,请点此查看更多更全内容