您的当前位置:首页正文

音圈电机的基本结构与工作原理001

2020-10-02 来源:个人技术集锦


音圈电机的电磁场计算与分析

音圈电机是一种将电信号转换成直线位移的直流伺服电机。以音圈电机为动力的直线定位系统具有整体结构简单、驱动速度快、定位精度高等优点,已广泛应用于计算机磁盘驱动器、激光微调机、六自由度机器人手臂等高新技术设备中。

评价音圈电机的指标包括出力大小和“力一位移”曲线的平滑度。在音固电机设计中,需要合理确定各个尺寸和电磁参数,以得到理想的出力和“力一位移”曲线。尽管音圈电机的结构比较简单,但是设计方法有其特殊性,目前关于该电机设计计算的参考文献仍较少,仅有国外的产品介绍可供参考。音圈电机的出力和“力一位移”曲线的计算应以电磁场计算为基础。

音圈电机的结构主要由定子和动子组成。其中定子包括外磁轭、环形磁钢、隔磁环和内磁轭,动子由音圈绕组和绕组支架组成。

音圈电机的工作原理与电动式扬声器类似,即在磁场中放入一环形绕组,绕组通电后产生电磁力,带动负载作直线运动;改变电流的强弱和极性,即可改变电磁力的大小和方向。

音圈电机的设计应遵循以下几个基本原则:

(1)在电机体积给定的情况下,应尽可能增加气隙磁密与线圈总长度的乘积,以提高单位电流产生的磁推力。

(2)减小漏磁,降低磁路的饱和程度,从而减小电机的体积。

(3)合理设计电机定子和动子的轴向长度,以得到平滑的“力-位移”曲线。

电磁场计算

音圈电机的设计与分析应以电磁场计算为基础。由于音圈电机内的磁场是一个轴对称场,所以可采用二维有限元法进行计算。

影响音圈电机性能的结构参数主要包括磁钢厚度、音圈厚度、外磁轭厚度、极间距离和定动子长度。

磁钢厚度越大,则气隙磁场越强,电机的出力也越大,但在电机外径一定的条件下,音圈的直径要减小。因此须适当选择磁钢厚度,才能使电机出力最大。

音圈厚度不但影响电机绕组的安匝数,同时影响气隙磁密,两者相互矛盾。而电机的出力与这两项乘积成正比,因此存在最优厚度使电机出力最大。可以看出,音圈厚度对电机出力的影响较为明显,音圈厚度过大过或小都会使电机的出力降低。

外磁轭厚度主要影响磁路的饱和程度。厚度过小,饱和程度增加,电机的漏磁将增大;反之,厚度太大,音圈直径将减小。所以必须合理地设计外磁轭厚度。

音圈电机的两个环形磁极之间存在着较大的漏磁。漏磁场将使外磁轭的磁通增加,饱和程度增加;为了减小极问漏磁,在极间设计一个隔磁环,从而降低外磁轭部分的饱和程度,减小磁轭的厚度。但是极间距离必须合理设计,否则会影响电机的总磁通,反而降低电机的出力。可以看出,极间距离对电机的出力也有较明显的影响。

定子和动子长度的选取主要影响电机“力-位移”曲线的平滑度。定子长度一定时,适

当改变动子长度,可以使“力-位移”曲线更平滑,但是应以满足电机的行程要求为主,否则会造成电机体积的增加和成本的浪费。

通过本文的分析,可得出以下结论:

(1)数值计算是进行音圈电机设计的有效方法,可以准确地计算出电机的出力和特性。

(2)影响音固电机的结构参数包括磁钢厚度、音圈厚度、外磁轭厚度、极间距离以及定子和动子长度,其中影响较大的是磁钢厚度和音圈厚度。

(3)为了减小漏磁并降低磁路的饱和程度,在磁极之间设计隔磁环是非常必要的。影响音圈电机的结构参数包括磁钢厚度、音圈厚度、外磁轭厚度、极间距离以及定子和动子长度,其中影响较大的是磁钢厚度和音圈厚度。

(4)底部磁极对应的气隙磁场略大于外部磁极对应的磁场,这是由于电机内磁路的不对称而引起的;它将造成“力-位移”曲线左右两段的不对称。

因篇幅问题不能全部显示,请点此查看更多更全内容