TheKolmogorovcomplexityofinfinitewords
LudwigStaiger
Martin-Luther-Universit¨atHalle-Wittenberg
Institutf¨urInformatik
von-Seckendorff-Platz1,D–06099Halle(Saale),Germany
TheaimofthispaperistobrieflysurveyseveralresultsontheKolmogorovcomplexityofinfinitestrings.Wefocusonthoseresultswhichcanbede-rivedbyelementarymethodsfromtheKolmogorovcomplexityoffinitestrings(words)andcountingargumentsforsetsoffinitestrings(languages)ase.g.structurefunctionsandtheconceptofentropyoflanguages.
TheconceptofKolmogorovorprogramsizecomplexitywasintroducedinthepapersbySolomonoff[27],Kolmogorov[14]andChaitin[6]inthesixties(forthecompletehistoryseethetextbooksbyCalude[4]orLiandVit´anyi[15]).Itmeasurestheinformationcontentofa(finite)stringasthesizeofthesmallestprogramthatcomputesthestring,thatis,thecomplexityofastringistheamountofinformationnecessarytoprintthestring.
TheoriginalintentionofKolmogorovwastogiveanalternativeapproachtoinformationtheorynotdependingonprobabilitytheory.AfirstfactprovingevidenceofthisintentionwasP.Martin-L¨of’s[19]characterisationofinfiniterandomstrings.Roughlyspeaking,ifaninfinitestringisrandomthenmostofitsinitialwordshavemaximumKolmogorovcomplexity,thatis,havea
ISSN 1433-8092
complexitywhichisclosetotheirlength.Toputitintothecontextofinfor-mation,theamountofinformationwhichmustprovidedinordertospecifyaparticularsymbolofarandomsequenceisoneunitofinformation(e.g.onebitifweconsiderbinarysequences).
AlthoughKolmogorovwasinterestedmainlyinthecomplexityoffinitestrings,Kolmogorovcomplexitywasalsoappliedtoinfinitestrings.Hereitwascom-paredtoinformation-theoreticsizemeasures(ordimensions).Thesedimen-sionsarealsoknownfromfractalgeometry(see[10]).ItturnedoutthatsomeofthemarecloselyrelatedtoKolmogorovcomplexity.Whereasthepapers[8,9]giveanaccountontheKolmogorovcomplexityofsingleinfinitestrings,thepapers[2,3,23–25,28,31]setKolmogorovcomplexityofindividualinfinitestringsinrelationtothedimension(topologicalentropy,Hausdorffdimension)ofsetscontainingthesestrings.
ThefirstoneofthosedimensionsiscalledMinkowskiorbox-countingdimen-sion.Itisalsoknownunderseveralothernames(cf.[10]).TheothermeasuresaretheHausdorffdimensionandthepackingormodifiedbox-countingdimen-sion.
AnotherwaytoapproachKolmogorovcomplexityofinfinitestringsistofurtherpursuetheinvestigationofrandomness(see[4,15,26,38])andpar-tialrandomness[5,31,36].HerewehaveseveralcharacterisationsofrandomstringscombiningcomplexityormartingalesandorderfunctionsasinitiatedbySchnorr[26].Recentlytheconstructivisationofdimensionasin[1,16–18]gavenewinsightintotheseproblems.Thesepapersusetheconceptofso-calleds-gales,acombinationofmartingalesandexponentialorderfunctions.TheirrelationtoKolmogorovcomplexityisbasedonLevin’s[40]constructionofauniversalsemi-measure.ThecoincidenceofLutz’s[1,16–18]constructivedimensionandKolmogorovcomplexityofinfinitewordsisimmediatefromTheorem3.4of[40]andTheorem3.6[18].Foradetailedexplanationseealso[35].
InthispaperwefocusonresultslinkingKolmogorovcomplexityofsetsofin-finitestringstotheirdimensions.AmajorpointisthatweshowhowtoderivetheseresultsutilisingsimpleboundsontheKolmogorovcomplexityoffinitestringsandtransferthemfromlanguages(setsoffinitestrings)tosetsofinfi-nitestringsbymeansoflimitconcepts.Thisisdoneinanelementarymannerusingstructural(combinatorial)propertiesastheentropyoflanguages.Sim-ilarapproacheswerealreadypursuedinpartinthepapers[13]and[31,34].IncontrasttoHitchcock’spaper[13]whichusestheconceptofs-galesthepresentpaperisbasedonelementarypropertiesofKolmogorovcomplexityoffinitestrings.
WestartwithabriefaccountofKolmogorovcomplexityoffinitestringsand
2
theentropyoflanguagesinSection2.Then,inSection3,weproceedtothederivationofresultslinkingtheentropyoflanguagestodimensionsofsetsofinfinitestrings.Section4givesgeneralboundsonKolmogorovcomplexityofsetsofinfinitestringsbytheirdimensions.
Morepreciseboundsoncomplexityviadimensionforcertainclassesofsetsofinfinitestringsareobtainedutilisingstructuralproperties.InSection5wepresentresultsforsetshavingself-similaritypropertiesordefinedbycom-putabilityconstraints.
InthefinalSection6weintroduceanotherversionofcomplexityofinfinitestringsandpresentitsrelationtodimensionandKolmogorovcomplexity.
1Notation
Inthissectionweintroducethenotationusedthroughoutthepaper.ByIN={0,1,2,...}wedenotethesetofnaturalnumbers.LetXbeanalphabetofcardinality|X|=r≥2.ByX∗wedenotethesetoffinitewordsonX,includingtheemptyworde,andXωisthesetofinfinitestrings(ω-words)overX.SubsetsofX∗willbereferredtoaslanguagesandsubsetsofXωasω-languages.
Forw∈X∗andη∈X∗∪Xωletw·ηbetheirconcatenation.Thisconcatena-tionproductextendsinanobviouswaytosubsetsW⊆X∗andB⊆X∗∪Xω.
ForalanguageWletW∗:=i∈INWi,andbyWω:={w1···wi···:wi∈W\\{e}}wedenotethesetofinfinitestringsformedbyconcatenatingwordsinW.Furthermore|w|isthelengthofthewordw∈X∗andpref(B)isthesetofallfiniteprefixesofstringsinB⊆X∗∪Xω.Weshallabbreviatew∈pref(η)(η∈X∗∪Xω)bywη,andη[0..n]isthen-lengthprefixofηprovided|η|≥n.AlanguageW⊆X∗isreferredtoasprefix-freeprovidedwvandw,v∈Wimplyw=v.
WedenotebyB/w:={η:w·η∈B}theleftderivativeofthesetB⊆X∗∪Xω.AsusualalanguageW⊆X∗isregularprovideditssetofleftderivatives{W/w:w∈X∗}isfinite.Inthesequelweassumethereadertobefamiliarwithbasicfactsoflanguagetheory.Asusual,theclassofrecursivelyenumerablelanguagesisdenotedbyΣ1,theclasscontainingtheircomplementsbyΠ1.Thus,Σ1∩Π1istheclassofrecursivelanguages.
WeconsiderthesetXωasametricspace(Cantorspace)(Xω,)ofallω-wordsoverthealphabetXwherethemetricisdefinedasfollows.
(ξ,η):=inf{r−|w|:wξ∧wη}.
3
Thisspaceisacompact,andC(F):={ξ:pref(ξ)⊆pref(F)}turnsouttobetheclosureofthesetF(smallestclosedsubsetcontainingF)in(Xω,).Besidestheω-powerWωwedefinestilltwomoremappingstransforminglan-−→
guagestoω-languages,theδ-ori.o.-limitW:={ξ:|pref(ξ)∩W|=∞}andthea.e.-limitW↑:={ξ:|pref(ξ)\\W|<∞}.Itisimmediatethat
−−−−−−→−−−−−→−→
W↑⊆W⊆pref(W)=pref(W)↑andC(F)=pref(F)↑=pref(F).Moreover,wehave
−−−−−−−−−→−−→→
pref(V)∩V=Vand(pref(W↑)∩W)↑=W↑.
(1)
2
Kolmogorovcomplexityoffinitewordsandtheentropyoflan-guages
InthissectionwebrieflyrecalltheconceptofKolmogorovcomplexityoffinitewords.Foramorecomprehensiveintroductionseethetextbooks[4]and[15].Tothisendletϕ:X∗→X∗beapartial-recursivefunction.Thecomplexityofawordw∈X∗withrespecttoϕisdefinedas
Kϕ(w):=inf{|π|:π∈X∗∧ϕ(π)=w}.
(2)
Itiswellknownthatthereisanoptimalpartial-recursivefunctionU:X∗→X∗,thatis,afunctionsatisfyingthatforeverypartial-recursivefunctionϕ
∃cϕ∀w(w∈X∗→KU(w)≤Kϕ(w)+cϕ)
(3)
Ifoneconsidersonlypartial-recursivefunctionsϕwithprefix-freedomaindom(ϕ)⊆X∗weobtaininthesamewayanoptimalpartial-recursivefunctionC.
Proposition1ThereisapartialrecursivefunctionC:X∗→X∗withprefix-freedomaindom(C)suchthatforeverypartial-recursivefunctionsϕwithprefix-freedomaindom(ϕ)thereisaconstantcϕsuchthat
∀w(w∈X∗→KC(w)≤Kϕ(w)+cϕ).
Following[15]thecomplexityKCwillbecalledprefixcomplexity.
Athirdversionusefulforourconsiderationsistheconditionalcomplexity.LetA∈{IN,X∗},considerapartial-recursivefunctionψ:X∗×A→X∗andset
Kψ(w|a):=inf{|π|:π∈X∗∧ψ(π,a)=w}.
4
(4)
Againwehaveanoptimalpartial-recursivefunctionA:X∗×A→X∗satis-fyingthatforeverypartial-recursivefunctionψ
∃cψ∀w∀a(w∈X∗∧a∈A→KA(w|a)≤Kψ(w|a)+cψ).
Forthisconditionalcomplexitywehavethefollowingtwoproperties.ThefirstoneisTheorem1.2in[40](seealsoTheorem2.1.3in[15]).
Theorem2(Kolmogorov)LetM⊆X∗×AbearecursivelyenumerablesetsuchthateachsectionMa:={w:(w,a)∈M}isfinite.Thenthereisac∈INsuchthatK(w|a)≤logr|Ma|+cforalla∈Aandw∈Ma.ThenexttheoremisaslightextensionofTheorem2.9of[31].
Theorem3LetM,M⊆X∗×Aberecursivelyenumerablesetssuchthat
eachsectionMa:={w:(w,a)∈M}isfinite,andlets:A→INbea
recursivefunctionsatisfying|Ma|≤s(a).Thenthereisac∈INsuchthatK(w|a)≤logr(max{s(a)−|Ma|,1})+cfor
alla∈Aandw∈Ma\\Ma.
PROOF.Weconstructafunctionψ:X∗×A→X∗suchthatKψ(w|a)≤
logr(max{s(a)−|Ma|,1})foralla∈Aandw∈Ma\\Ma.
(t)LetMa⊆M∩M,t≤|Ma∩Ma|bethesetofthefirsttelementsoftheform(v,a)intheenumerationofM∩M.
Forinput(π,a)weenumerateMuntilwegett0:=max{s(a)−r|π|,1}elementsoftheform(w,a).LetπbetheqthelementofX|π|inlexicographicalorder.
(t0)
NowenumerateMuntilqelementsinMa\\Maappearandputψ(π,a):=vwhen(v,a)isthisqthelement.
Aspecialcaseoftheconditionalcomplexityisthelength-conditionalcomplex-ity.Herewehaveapartial-recursivefunctionψ:X∗×IN→X∗andset
Kψ(w|n):=inf{|π|:ψ(π,n)=w∧|w|=n}.
(5)
Againwehaveanoptimalpartial-recursivefunctionL:X∗×IN→X∗satis-fyingthatforeverypartial-recursivefunctionψ
∃cψ∀w∀n(w∈X∗∧n∈IN→KL(w|n)≤Kψ(w|n)+cψ).
5
Thefollowingrelationbetweentheoptimalfunctionsisobvious.
KL(w||w|)≤KU(w)+c1≤KC(w)+c2
(6)
holdsforallw∈X∗andconstantsc1,c2dependingonlyonL,UandC.InthesequelweshallfixtheseoptimalfunctionsanddenotethecorrespondingcomplexitiesbyK(·|n),KandH,respectively.1
TheinequalitiesinEq.(6)canbe,tosomeextent,reversed(see[4,15]).
K(w||w|)+2·logr|w|+c1≥K(w)and
K(w)+2·logr|w|+c2≥H(w)
forallw∈X∗andsuitableconstantsc1,c2∈IR.
ForalanguageW⊆X∗defineitslength-structurefunction2sW:IN→INbysW(n):=|W∩Xn|anditsentropyas(cf.[7,12,31]),
HW=limsup
n→∞
(7)
logr(1+sW(n))
1
Thisfollowsthenotationof[4]whereas[15]usesCfortheusualcomplexityandKfortheprefixcomplexity.
2ThisfunctionisnottobeconfusedwiththeKolmogorovstructurefunctiondefinede.g.in[15,Section2.2.2].
6
Corollary6IfW∈Σ1∩Π1thenthereisac>0suchthat
∀w(w∈W→K(w)≤logr
|w|
s(i)i=0W
+c).
WeconcludethisintroductorysectionwiththeconsiderationofthesetsWα:=
{w:K(w)<α·|w|}.Asimplecountingargumentshowsthat
HWα≤αfor0≤α≤1.
(8)
Forcertainα∈[0,1]thesetsWαcanbeeffectivelydescribed.Tothisendwementionthatarealnumberα∈[0,1]iscalledleft-computable3provided{(p,q):p,q∈IN∧p
infBF=limn→∞dimBF=limsup
n→∞
logr(spref(F)(n)+1)logr(spref(F)(n)+1)
B
F=dimdimBF=
3
Thesenumbersarealsocalledsemi-computablefrombelow.
7
NextwerecallthedefinitionoftheHausdorffmeasureandHausdorffdimen-sionofasubsetof(Xω,)(seee.g.[10]).Inthesettingoflanguagesthiscanbereadasfollows(see[31,34]).ForF⊆Xωand0≤α≤1theequation
ILα(F):=liminf
l→∞
r
−α·|w|
:F⊆W·X∧∀w(w∈W→|w|≥l)(9)
ω
w∈W
definestheα-dimensionalmetricoutermeasureonXω.ILαsatisfiesthefol-lowing(ForatypicalplotofILα(F)asafunctionofαseeFigure1below.).Corollary9IfILα(F)<∞thenILα+ε(F)=0forallε>0.
ILα(F)∞
0
qILα0(F)
0
α0=dimHF
1
αE
Fig.1.AtypicalplotofILα(F)asafunctionofαwhen|F|=∞
ThentheHausdorffdimensionofFisdefinedas
dimHF:=sup{α:α=0∨ILα(F)=∞}=inf{α:ILα(F)=0}.ForthedefinitionofthepackingdimensiondimPweuseitscharacterisation
asmodifiedupperboxcountingdimension
dimMBF=inf{supi∈IN
B
F≤dimBF.
Everydimensionismonotone,thatis,E⊆FimpliesdimE≤dimFandshiftinvariant,thatis,dimw·F=dimF.Moreover
dimB(E∪F)=max{dimBF}and
dim(i∈INFi)=supi∈INdimFifordim∈{dimP,dimH}
Thatis,theupperboxcountingdimensionisstable,andHausdorffandpack-ingdimensionarecountablystable.
8
Finally,wegiveaconnectiontotheentropyoflanguages(see[31]).Westartwithsomesimpleinequalities.
−→
dimHV≤HVdimW↑≤H
P
(10)(11)
W
−→
PROOF.InordertoproveEq.(10)weshowthatα>HVimpliesILα(V)=0.
Ifα>HVthenv∈Vr−α·|v|<∞.DefineV(i):={v:v∈V∧|pref(v)∩V|=i+1},thatis,V(i)isthesetofwordsinVhavingexactlyiproperprefixes
−→
inV.ByconstructionV(i)·Xω⊇V,andV=i∈INV(i)isadisjointunion.
−→
Now,Eq.(9)showsthatILα(V)≤v∈V(i)r−α·|v|.Thelattertendstozeroasiapproachesinfinity.
ToshowEq.(11)weobservethatW↑=w∈X∗EwwhereEw:={ξ:pref(ξ)⊆pref(w)∪(W∩w·X∗)}.Itisreadilyseenthat
α
.Thiscompletestheproofofthefirstidentity.
FortheproofofthesecondassertionitsufficestoshowthatdimPF≥inf{HW:
F⊆W↑}.Westartwithacoveringi∈INFi⊇Fsatisfyingsupi∈IN
dimBni=0Fi=max0≤i≤n
dimBFi=limi→∞
(1)ni n . NowdefineWinthefollowingway:W∩Xn:=pref(Fi)∩Xnforni≤n n ≤ dimBFi≤dimPF+ε. Lemma10provescloseconnectionsbetweentheHausdorffdimensionofan −→ ω-languageandthelimitV,ontheonehand,andthepackingdimensionandthelimitW↑,ontheotherhand.InthenextsectionweshallprovesimilarconnectionsbetweentwoversionofKolmogorovcomplexityandthe −→ limit-operationsVandW↑. 4GeneralboundsonKolmogorovcomplexitybydimensions TheKolmogorovcomplexityofaninfinitewordξ∈Xωisafunctionk:IN→INmappingthen-lengthprefixξ[0..n]ofξtoitscorrespondingcomplexityK(ξ[0..n])(orH(ξ[0..n])orK(ξ[0..n]|n),respectively)(see[8]).Alargepartofinvestigationsdealswiththefollowingfirstorderapproximationsofthecomplexityofindividualω-wordsandsetsofω-words: κ(ξ):=limsup n→∞ K(ξ[0..n])K(ξ[0..n]) (F):=supκ ξ∈F (ξ):=liminf n→∞ areindependentofthechosenword complexityK,HorK(·|n). WeobtainthefollowingconnectiontothelanguagesWα. {ξ:κ −→↑,(ξ)≤α}⊆Wγand{ξ:κ(ξ)≤α}⊆Wγ forα<γ,areimmediatefromthedefinitions. 10 −→ Toshowthereverseinclusionsletξ∈γ>αWγ.Thenforeveryε>0thereareinfinitelymanyn∈INsuchthatK(ξ[0..n])<(α+ε)·n.Consequently,liminfw→ξK(ξ[0..n]) (F)andκ(F)similartotherelationbetween entropyanddimensioninLemma10.ForthecaseW∈Σ1thislemmawasprovedin[13,Lemma5.5](seealso[1])inadifferentmanner.Lemma11κ observethatEqs.(12)and(8)imply κ (F)∧γisleft-computable} ≥inf{HWγ:γ>κ −→ (F)≥inf{HV:F⊆V∧V∈Σ1}follows. Thecaseofκ(F)isprovedinthesameway. HereLemma11provesasimilarconnectionbetweenlowerandupperKol-−→ mogorovcomplexityandthelimit-operationsVorW↑asLemma10didforHausdorffandpackingdimensions.Inthesequel,theseresultswillbeusedtoobtainboundsontheKolmogorovcomplexityofinfinitestringsviaHausdorfforpackingdimension. 4.1Lowerbounds ItseemstobeanobviousmatterthatsimilartoCorollary4largesetscontaincomplexelements.Thisisestablishedbythefollowinglowerboundsonκ Theorem12([24,1])dimHF≤κ spref(F)(|w|) =g(|w|)· |v|=|w|spref(F/v)(|w|) B F. Theorem15IfF⊆Xωisbalancedandclosedthenthereisaξ∈Fsuchthat K(ξ[0..n]|n)≥aedimHF·n−o(n). 12 4.2Upperbounds AfterthederivationoflowerboundsontheKolmogorovcomplexityofinfinitewordsweturntoupperbounds.HereweneedsomecomputationalconstraintsonthesetF.Tothisendweintroducethelowclassesofthearithmeticalhierarchyofω-languages(seee.g.[22,32]). Definition16(Π1-definableω-languages)F⊆XωisΠ1-definableifandonlyifthereisarecursivelanguageWF⊆X∗(WF∈Σ1∩Π1)suchthat ξ∈F ←→ ∀w(wξ→w∈WF). Definition17(Σ2-definableω-languages)F⊆XωisΣ2-definableifandonlyifthereisarecursivesetMF⊆IN×X∗suchthat ξ∈F ←→ ∃i(i∈IN∧∀w(wξ:(i,w)∈MF)). Theotherclassesaredefinedinasimilarway.Observethatwecanchar-acteriseseveralclassesbyrecursiveorrecursivelyenumerablelanguages(see[26,29,32]). Lemma18FortheclassesΣ1,Π1,Σ2andΠ2ofthearithmeticalhierarchyofω-languagesinXωthefollowingidentitiesholdtrue. Σ1={W·Xω:W⊆X∗∧W∈Σ1∩Π1} Π1={F:Fisclosedin(Xω,)∧pref(F)∈Π1}Σ2={F:∃W(W⊆X∗∧W∈Σ1∩Π1∧F=W↑)} −→ Π2={F:∃W(W⊆X∗∧W∈Σ1∩Π1∧F=W)} OtherclassesofinterestarethefollowingoneswhicharedefinedsimilartothecharacterisationofΠ1inLemma18. P={F:Fisclosedin(Xω,)∧pref(F)∈Π2}S={F:Fisclosedin(Xω,)∧pref(F)∈Σ1} Figure2presentstheinclusionrelationbetweentheseclasses.Allinclusionsareproper,Σ2andSareincomparable,andΣ1isnotincludedinP.Forinstance,inExample1.15of[31]ω-languagesE∈S\\Σ2andF∈Π1\\Saregiven,andΣ1⊆PfollowsfromthefactthatPcontainsonlyclosedsets.Firstweobtainanexactestimateforκ B(Σ2) d d d Σ2 B(Σ1) ¨¨¨¨¨¨ Π2 P Σ1 d d dd d d Π1S Fig.2.Inclusionrelationsbetweenvariousclassesofω-languages(B(K)denotesthe closureofKunderBooleanoperations) Theorem19IfF⊆XωisΣ2-definablethen dimHF=sup{κ (ξ)=1forallξ∈F,andκ(ξ)=0forall ξ∈E\\F. Thus,fortheω-languageEinLemma20wehaveκ(E)=1whereasdimHE=dimPE=0asEiscountable.ThisshowsalsothatthesetEgiveninLemma20isanotherwitnessforS\\Σ2=∅.ForsetsinSweobtainanupperboundviaCorollary5.Lemma21IfE∈SthenκSimilarlyoneobtainsthefollowing.Lemma22IfE∈S∪Π1thenκ(E)≤ (E∩F)=1.Consequently, theboundsofLemmas21and22donotextendtoω-languagesoftheformE∩FwhereE∈SandF∈Π1. 14 B E. 5 Kolmogorovcomplexityforω-powerlanguagesandregularω-languages AsLemma20showedtheresultofTheorem19cannotbeextendedtohigherclassesofthearithmeticalhierarchy.IntheprecedingTheorem15wesawthatstructuralpropertiesmightleadtotighterlowerbounds.Inthissectionclassesofω-languageswhichallowformorepreciseboundsarepresented. 5.1ω-powerlanguages Thefirstclassisconnectedtoω-languagesexhibitingacertainkindofself-similarity,namely,ω-languagesF⊆Xωcontaining,foracertainsetofwords W⊆X∗alloftheshiftsw·Fwherew∈WinsuchawaythatF=w∈Ww·F.Amongtheseω-languagesthemaximaloneshavetheformWω(see[33]).Theysatisfythefollowingproperties. −−→ Proposition23LetW⊆X∗.ThenWω⊆W∗⊆C(Wω). ItisalsoobviousthatWωisclosedifWisfinite,andWωisintheBorelclassΠ2ifWisprefix-free.Onecannot,however,boundthetopologicalcomplexityofsetsoftheformWωasFinkel[11]showedthatforeveryi∈INthedifferenceoftheBorelclassesΠi+1\\Πicontainsanω-powerlanguagesWωwhereWisacontext-freelanguage. Eq.(6.2)of[31]andCorollary3.9of[10]givethefollowingformulaeforHausdorffandpackingdimension.Proposition24dimHWω −−→ =dimHW∗=HW∗ dimPC(Wω)= ThenextcorollaryfollowsalsofromTheorem12andProposition24.Corollary27κ(Wω)≥ dimBWωifW∈Σ1 Proposition24andLemma11yieldasimilarestimateforκ (Wω). (13) 5.2Regularω-languages Theclassofregularω-languagesistheonewhichismostextensivelyinvesti-gated,becauseitistheclassofω-languagesdefinablebyfiniteautomata(cf.[32,37]).Asweshallseebelow,thisclassbehavesmostregularlyalsoincaseofcorrespondencesbetweencomplexityanddimension. Werefertoanω-languageF⊆Xωasregularprovidedthereareann∈INandregularlanguagesWi,Vi,i=1,...,nsuchthat F= n ω W·V.iii=1 Itisknownthatallregularω-languagesareinB(Σ2). Firstwementionpropertiesofregularω-languageswithrespecttodimensions whichcanbefoundin[31,Corollary4.4]. Proposition29IfF⊆Xωisaregularω-languageclosedin(Xω,)thendimHF= dimBWω. Thisyieldsthefollowingasacorollary. Corollary31IfF⊆Xωisaregularω-languagethendimHF=dimPF. 16 ωω PROOF.Observethatdimni=1Wi·Vi=max{dimVi:1≤i≤n}holdsfordim∈{dimH,dimP}.NowtheassertionfollowswithCorollary30. Regularω-languageshavenon-nulldimH-dimensionalmeasure. Theorem32([31,Theorem4.7])LetF⊆Xωbeanonemptyregularω-language.ThenILdimHF(F)>0. ThisenablesustoapplyTheorem13toobtainlowerboundsonthecomplexityfunctionforω-wordsinregularω-languages.Moreover,wecanalsotransferP.Martin-L¨of’sresult[20]oncomplexityoscillationsinXωtoallnonemptyregularω-languages(see[31,Theorem4.12]).Theorem33LetF⊆Xωbenonemptyandregular. (1)Iff:IN→INsatisfiesn∈INr−f(i)<∞thenthereisaξ∈Fsuchthat K(ξ[0..n]|n)≥aedimHF·n−f(n). (2)Iff:IN→INisarecursivefunctionandsatisfiesn∈INr−f(i)=∞then K(ξ[0..n]|n)≤iodimHF·n−f(n)holdsforallξ∈F.Agenerallinearupperboundonthecomplexityfunctionforω-wordsinregularω-languagesisthefollowingone(cf.also[28,31]). Theorem34(1)LetW⊆X∗bearegularlanguage.IfdimHWω>0 thenthereisaconstantcW∈IRsuchthatforallξ∈WωtheboundK(ξ[0..n])≤aedimHWω·n+cWholds. (2)LetFbearegularω-languagesuchthatdimHF>0.Thenforevery ξ∈Fthereisaconstantcξ∈IRsuchthatK(ξ[0..n])≤aedimHF·n+cξ. PROOF.SinceWisregular,pref(Wω)isalsoregular,thuspref(Wω)∈Σ1∩Π1.AccordingtoProposition2.15of[31]thereisaconstantc∈IRsuchthatspref(Wω)(n)≤c·rα·nforα=Hpref(Wω)andalln∈IN.Consequently,nα·(n+1) forasuitableconstantc∈IR.Now,ourfirsti=0spref(Wω)(i)≤c·r assertionisaconsequenceofCorollaries6and30.Thesecondonefollows,becauseξ∈F=forsuitablei∈{1,...,n}andwξ,i∈Wi. n i=1 Wi·Viωimpliesthatξ∈wξ,i·Viω ThetheoremdoesnotholdfordimHF=0.Inthiscasewehave,inviewofProposition4.12of[31]thataregularω-languageofHausdorffdimension0iscountableandconsistsentirelyofrecursiveω-words. 17 6Subwordcomplexity ItwouldbedesirabletohaveananaloguetoLemma11forregularlanguages.ForregularlanguagesV⊆X∗,however,theidentityHV=Hpref(V)istrue. −→ InconnectionwiththefactthatF⊆Vimpliespref(F)⊆pref(V)we −→ obtaintheidentityinf{HV:F⊆V∧Visregular}=inf{HV:pref(F)⊆pref(V)∧Visregular}. Consequently,sinceeverydensesubsetFofXωhaspref(F)=X∗,theinfi-mumis1forarbitrarydensesubsetsofXω. Butifwerestrictourselvestosingleω-wordsweobtainavariantofcomplexity,thesocalledsubwordcomplexity.Itturnsoutthatthissubwordcomplexityτ(ξ)ofastringξ∈XωisalsocloselyrelatedtotheHausdorffdimensionoftheregularω-languagescontainingξ.Westartwithsomedefinitions.Let infix(ξ):={w:w∈X∗∧∃v∃ξ(v·w·ξ=ξ)}andinfix∞(ξ):={w:w∈X∗∧∀n∃v∃ξ(|v|≥n∧v·w·ξ=ξ)} (14)(15) bethesetofsubwordsofξandthesetofsubwordsoccurringinfinitelyofteninξ,respectively.Wecallτ(ξ):=Hinfix(ξ)thesubwordcomplexityofthestringξ∈Xω. Thenthefollowingidentityholds(cf.[31,Section5])Lemma35 τ(ξ)=Hinfix(ξ)=Hinfix∞(ξ)=inf{dimHF:Fisregular∧ξ∈F} =inf{ andκtothisnewcomplexitymea-sureforinfinitestrings. κ ,κ,τ} (η)(η)Eα:={ξ:η(ξ)≤α}andFα:={ξ:η(ξ)<α}. (17) 18 ThesetsE(κ ,κ,τ} (τ)(κ)Eα⊆Eα⊆E(κ α) (18)(19) (η)(η)ItshouldbementionedthatLemma3.4of[3]showsFα⊂Eαforη∈{κ ,κandτcanbeobtainedfromtheresultsof [23]or[3]andLemma35. (η)(η)Theorem36EachofthesetsEα,Fα,bbwhereη∈{κ α ) . Theorem12showsdimHE(κ(ξ)≤α}≤α. (τ)Inordertoshowα≤dimHFα=dimH{ξ:ξ∈Xω∧τ(ξ)<α}itsufficestoconstructacountableunionofregularω-languagesFi⊆{ξ:ξ∈Xω∧τ(ξ)<α}suchthatsup{dimHFi:i∈IN}=α. LetMα:={(p,q):p,q∈IN∧q=0∧ p .TheninviewofLemma35wehaveq Xω∧τ(ξ)<α},andourassertionfollows. (p,q)∈Mα F(p,q)⊆{ξ:ξ∈ (η) SinceEα⊂Fα,forα<αweobtainasacorollarytoTheorem36and (η)(η) Lemma3.4of[3]thatthefamilies(Eα)α∈[0,1]and(Fα)α∈[0,1]formstrictlyincreasingchainsofω-languages. (κ) Whatconcernsthepackingdimension,Theorem12showslikewisedimPEα= (τ)(τ) dimP{ξ:ξ∈Xω∧κ(ξ)≤α}≤α.Thus,inviewofα=dimHFα≤dimPFαandEq(19),weobtainalsothefollowing. (η)(η) Lemma37EachofthesetsEα,Fα,whereη∈{κ,τ},haspackingdi-mensionα. (η) Lemma37,however,doesnotholdforκ (ξ)=0}=1. 19 References [1]K.B.Athreya,J.M.Hitchcock,J.H.Lutz,andE.Mayordomo,Effectivestrong dimension,algorithmicinformation,andcomputationalcomplexity.InProc.21stSymposiumonTheoreticalAspectsofComputerScience,Springer-Verlag,Berlin,2004,632–643.[2]A.A.Brudno,Topologicalentropy,andcomplexityinthesenseofA.N. Kolmogorov.(Russian)UspehiMat.Nauk29(1974)6(180),157–158.[3]J.Cai,andJ.Hartmanis,OnHausdorffandtopologicaldimensionsofthe Kolmogorovcomplexityoftherealline.JournalofComputerandSystemsSciences,49(1994),605–619.[4]C.S.Calude.InformationandRandomness.AnAlgorithmicPerspective,2nd Edition,RevisedandExtended,SpringerVerlag,Berlin,2002[5]C.S.Calude,L.StaigerandS.A.Terwijn,Onpartialrandomness.Ann.Pure andAppl.Logic,138(2006),20-30.[6]G.J.Chaitin,Onthelengthofprogramsforcomputingfinitebinarysequences, J.Assoc.Comput.Mach.13(1966),547-569.[7]N.ChomskyandG.A.Miller,Finite-statelanguages,Inform.andControl1 (1958),91-112.[8]R.P.Daley,Theextentanddensityofsequenceswithintheminimal-program complexityhierarchies,J.Comput.SystemSci.9(1974),151-163.[9]R.P.Daley,Minimal-programcomplexityofpseudo-recursiveandpseudo-randomsequences.Math.SystemsTheory9(1975)1,83–94.[10]K.Falconer,FractalGeometry.Wiley,NewYork,1990. [11]O.Finkel,Topologicalpropertiesofomegacontext-freelanguages,Theoret. Comput.Sci.262(2001),669–697.[12]G.Hansel,D.Perrin,andI.Simon.Entropyandcompression,in:STACS’92, A.FinkelandM.Jantzen(Eds.),Lect.NotesComput.Sci.,Vol.577,Springer-Verlag,Berlin1992,515–530.[13]J.M.Hitchcock,Correspondenceprinciplesforeffectivedimension.Theory Comput.Systems38(2005),559–571.[14]A.N.Kolmogorov(1965),Threeapproachestothequantitativedefinitionof information,ProblemyPeredachiInformatsii1(1),3-11.[Russian][15]M.Li,andP.M.B.Vit´anyi,AnIntroductiontoKolmogorovComplexityandits Applications,2ndedition,Springer-Verlag,Berlin,1997.[16]J.H.Lutz,Galesandtheconstructivedimensionofindividualsequences, InProc.27thInternationalColloquiumonAutomata,Languages,andProgramming,Springer-Verlag,Heidelberg,2000,902–913. 20 [17]J.H.Lutz,Dimensionincomplexityclasses,SIAMJournalonComputing,32 (2003),1236–1250.[18]J.H.Lutz,Thedimensionsofindividualstringsandsequences,Inform.and Comput.187(2003),49–79.[19]P.Martin-L¨of.Thedefinitionofrandomsequences,Inform.andControl9 (1966),602–619.[20]P.Martin-L¨of.Complexityoscillationsininfinitebinarysequences,Z. Wahrscheinlichkeitstheorieundverw.Gebiete19(1971),225-230.[21]C.A.Rogers,HausdorffMeasures.CambridgeUniversityPress,1970.[22]H.Rogers,TheoryofRecursiveFunctionsandEffectiveComputability,McGraw Hill,NewYork1967.[23]B.Ya.Ryabko,CodingofcombinatorialsourcesandHausdorffdimension, SovietMath.Dokl.30(1984)(1),219-222.[24]B.Ya.Ryabko,Noiselesscodingofcombinatorialsources,Hausdorffdimension andKolmogorovcomplexity,ProblemyPeredachiInformatsii22(1986)(3),16-26.[25]B.Ya.Ryabko,Thecomplexityandeffectivenessofpredictionalgorithms,J. Complexity10(1994),281-295.[26]C.P.Schnorr,Zuf¨alligkeitundWahrscheinlichkeit,LectureNotesinMath.No. 218,Springer-Verlag,Berlin1971.[27]R.J.Solomonoff,Aformaltheoryofinductiveinference,Part1andPart2, Inform.andControl7(1964),1-22,and224-254.[28]L.Staiger,Complexityandentropy,InMathematicalFoundationsofComputer Science,Proc.10thIntern.Symposium,(J.GruskaandM.Chytil,eds.),LectureNotesinComput.Sci.No.118,Springer-Verlag,Berlin1981,508–514.[29]L.Staiger,Hierarchiesofrecursiveω-languages.J.Inform.Process.Cybernetics EIK22(1986)5/6,219–241.[30]L.Staiger,CombinatorialpropertiesoftheHausdorffdimension.J.Statist. Plann.Inference23(1989),95-100.[31]L.Staiger,KolmogorovcomplexityandHausdorffdimension,Inform.and Comput.103(1993),159–194.[32]L.Staiger.ω-languages,InHandbookofFormalLanguages(G.Rozenbergand A.Salomaaeds.)Vol.3,Springer,Berlin1997,pp.339–387.[33]L.Staiger.Onω-powerlanguages,in:NewTrendsinFormalLanguages, Control,Cooperation,andCombinatorics,vol.1218ofLectureNotesinComput.Sci.,pp.377–393,Springer,1997.[34]L.Staiger,AtightupperboundonKolmogorovcomplexityanduniformly optimalprediction,TheoryComput.Systems31(1998),215–229. 21 [35]L.Staiger,ConstructivedimensionequalsKolmogorovcomplexity.Inform. Process.Lett.93(2005),149–153[36]K.Tadaki.AgeneralizationofChaitin’shaltingprobabilityΩandhaltingself-similarsets,HokkaidoMath.J.31(2002),219–253.[37]W.Thomas,AutomataonInfiniteObjects,in:HandbookofTheoretical ComputerScience,(J.VanLeeuwenEd.),Vol.B,133–191,Elsevier,Amsterdam,1990.[38]M.vanLambalgen,Randomsequences,Ph.D.Thesis,Univ.ofAmsterdam, 1987.[39]KlausWeihrauch,Computableanalysis:anintroduction.Springer-Verlag, Berlin2000.[40]A.K.ZvonkinandL.A.Levin,Complexityoffiniteobjectsandthedevelopment oftheconceptsofinformationandrandomnessbymeansofthetheoryofalgorithms,RussianMath.Surveys25(1970),83–124. 22 ECCC http://eccc.hpi-web.de/ ISSN 1433-8092 因篇幅问题不能全部显示,请点此查看更多更全内容