您的当前位置:首页正文

(完整版)高中数学数列公式大全(很齐全哟~)

来源:个人技术集锦
一、高中数列基本公式:

1、一般数列的通项an与前n项和Sn的关系:an=

2、等差数列的通项公式:an=a1+(n—1)d an=ak+(n—k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式:Sn= Sn= Sn=

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式: an= a1 qn-1 an= ak qn—k

(其中a1为首项、ak为已知的第k项,an≠0)

5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

当q≠1时,Sn= Sn=

三、高中数学中有关等差、等比数列的结论

1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m — S3m、……仍为等差数列.

2、等差数列{an}中,若m+n=p+q,则

3、等比数列{an}中,若m+n=p+q,则

4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m — S3m、……仍为等比数列.

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列.

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列

{an bn}、 、 仍为等比数列。

7、等差数列{an}的任意等距离的项构成的数列仍为等差数列.

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a—d,a,a+d;四个数成等差的设法:a—3d,a-d,,a+d,a+3d

10、三个数成等比数列的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)

11、{an}为等差数列,则 (c〉0)是等比数列。

12、{bn}(bn>0)是等比数列,则{logcbn} (c〉0且c 1) 是等差数列。

13。 在等差数列 中:

(1)若项数为 ,则

(2)若数为 则, ,

14. 在等比数列 中:

(1) 若项数为 ,则

(2)若数为 则,

因篇幅问题不能全部显示,请点此查看更多更全内容