自人们发现电现象、磁现象、电磁感应现象以来,对电、磁和电磁感应现象进行了深入广泛的研究,发现了电磁之间的关系及其规律,形成了完整、系统的电磁理论。电磁理论促进了科学技术的发展,有力的推动了社会的进步。电磁理论认为:变化着的电场伴随变化着的磁场,变化着的磁场也伴随变化着的电场。
麦克斯韦电磁理论基础的电学和磁学的经验定律包括:静电学的库仑定律,涉及磁性的高斯定理,关于电流的磁性的安培定律,法拉第电磁感应定律。麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程预言:变化的电磁场以波的形式向空间传播.
麦克斯韦电磁场理论的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系。这个电磁场理论体系的核心就是麦克斯韦方程组。
麦克斯韦方程组是由四个微分方程构成,:
(1)描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。 (2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。 (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律。
麦克斯韦方程都是用微积分表述的,涉及到的方程包括:
1. 安培环路定理,就是磁场强度沿任意回路的环量等于环路所包围电流的代数和。 2.法拉第电磁感应定律,即电磁场互相转化,电场强度的弦度等于磁感应强度对时间的负偏导。
3.磁通连续性定理,即磁力线永远是闭合的,磁场没有标量的源,麦克斯韦表述是:对磁感应强度求散度为零。
4.高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量。麦克斯韦:电位移的散度等于电荷密度。
高斯定理
高斯定理1
矢量分析的重要定理之一。
穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。
换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比
因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力 由于磁力线总是闭合曲线,
线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理[1]。
与静电场中的高斯定理相比较,两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场;而在磁场中,由于自然界中没有单独的磁极存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。
电场 E (矢量)通过任一闭曲面的通量,即对该曲面的积分等于4π乘以该曲面所包围的总电荷量。公式表达:
∫(E·da) = 4π*S(ρdv) 适用条件:任何电场
静电场(见电场)的基本方程之一,它给出了电场强度在任意封闭曲面上的面积分和包围在封闭曲面内的总电量之间的关系。
根据库仑定律可以证明电场强度对任意封闭曲面的通量正比于该封闭曲面内电荷的代数和,即
公式
这就是高斯定理。它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。
高斯定理反映了静电场是有源场这一特性。凡是有正电荷的地方,必有电力线发出;凡是有负电荷的地方,必有电力线会聚。正电荷是电力线的源头,负电荷是电力线的尾闾。
高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的二次方反比律。把高斯定理应用于处在静因而测定导体内部是否有净电荷是检验库仑定律的电平衡条件下的金属导体,就得到导体内部无净电荷的结论,重要方法。
对于某些对称分布的电场,如均匀带电球的电场,无限大均匀带电面的电场以及无限长均匀带电圆柱的电场,可直接用高斯定理计算它们的电场强度。
当存在电介质并用电位移D描写电场时,高斯定理可表示成
它说明电位移对任意封闭曲面的通量只取决于曲面内自由电荷的代数和Σqo,与自由电荷的分布情况无关,与极化电荷亦无关。电位移对任一面积的能量为电通量,因而电位移亦称电通密度。对于各向同性的线性的电介质,电位移与电场强度成正比,D=εrεoE,εr称为介质的相对介电常数,这是一个无量纲的量。如果整个封闭曲面S在一均匀的相对介电常数为εr的线性介质中(其余空间区域可以充任何介质),高斯定理(2)又可写成
公式
在研究电介质中的静电场时,这两种形式的高斯定理特别重要。 高斯定理的微分形式为
公式
高斯定理2
定理:凡有理整方程f(x)=0必至少有一个根。 推论:一元n次方程
f(x)=a_0x^n+a_1x^(n-1)+……+a_(n-1)x+a_n=0 必有n个根,且只有n个根(包括虚根和重根)。
高斯定理3
正整数n可被表示为两整数平方和的充要条件为n的一切形如4k+3形状的质因子的幂次均为偶数
库仑定律
库仑定律:是电磁场理论的基本定律之一。真空中两个静止的点电荷之间的作用力与这两个电荷所带电量的乘积成正比,和它们距离的平方成反比,作用力的方向沿着这两个点电荷的连线,同名电荷相斥,异名电荷相吸。
公式:F=k*(q1*q2)/r^2 。 r ——两者之间的距离 k ——库仑常数
由此可见,电磁力在原子、分子结构中起决定性作用,这种作用力远大于万有引力引起的作用力,即可表述为质量对物体间的影响力远小于电磁力的作用,并且有:电荷之间的作用力随着电荷量的增大而增大,随着距离的增大而减小。
电磁感应定律
电磁感应现象
因磁通量变化产生感应电动势的现象,闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应。闭合电路的一部分导体在磁场中做切割磁感线运动,导体中就会产生电流。这种现象叫电磁感应现象。产生的电流称为感应电流。这是初中物理课本为便于学生理解所定义的电磁感应现象,不能全面概括电磁感现象:闭合线圈面积不变,改变磁场强度,磁通量也会改变,也会发生电磁感应现象。所以准确的定义如下: 因磁通量变化产生感应电动势的现象。
电磁感应与静电感应
电磁感应现象不应与静电感应[1]混淆。电磁感应将电动势与通过电路的磁通量联系起来,而静电感应则是使用另一带电荷的物体使物体产生电荷的方法。
定律简介
电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系和转化,对其本质的深入研究所揭示的电、磁场之间的联系,对麦克斯韦电磁场理论的建立具有重大意义。电磁感应现象在电工技术、电子技术以及电磁测量等方面都有广泛的应用。
若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s.ε为产生的感应电动势,单位为V.
计算公式
1.[感应电动势的大小计算公式]
1)E=n*ΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ,Δt磁通量的变化率}
但可以不和磁感线垂直,其中sinA 2)E=BLVsinA(切割磁感线运动) E=BLV中的v和L不可以和磁感线平行,为v或L与磁感线的夹角。{L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}
4)E=B(L^2)ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)} 2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)} 3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
*4.自感电动势E自=-n*ΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,Δt:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
作为两种不同现象的法拉第定律
有些物理学家注意到法拉第定律是一条描述两种现象的方程:由磁力在移动中的电线中产生的动生电动势,及由磁场转变而成的电力所产生的感生电动势。就像理查德费曼指出的那样:
所以“通量定则”,指出电路中电动势等于通过电路的磁通量变化率的,同样适用于通量不变化的时候,这是因为场有变化,或是因为电路移动(或两者皆是)……但是在我们对定则的解释里,我们用了两个属于完全不同个案的定律:“电路运动”的和“场变化”的。
我们不知道在物理学上还有其他地方,可以用到一条如此简单且准确的通用原理,来明白及分析两个不同的现象。
感应电流产生的条件
1.电路是闭合且通的
2.穿过闭合电路的磁通量发生变化
(如果缺少一个条件,就不会有感应电流产生). 感应电动势的种类:动生电动势和感生电动势。
使大 动生电动势是因为导体自身在磁场中做切割磁感线运动而产生的感应电动势,其方向用右手定则判断,拇指跟其余四个手指垂直并且都跟手掌在一个平面内,把右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,则其余四指指向动生电动势的方向。动生电动势的方向与产生的感应电流的方向相同。右手定则确定的动生电动势的方向符合能量转化与守恒定律。
感生电动势是因为穿过闭合线圈的磁场强度发生变化产生涡旋电场导致电流定向运动。其方向符合楞次定律。右手拇指指向磁场变化的反方向,四指握拳,四指方向即为感应电动势方向。
感应电动势
我们知道,要使闭合电路中有电流,这个电路中必须有电源,因为电流是由电源的电动势引起的。在电磁感应现象里,既然闭合电路里有感应电流,那么这个电路中也必定有电动势,在电磁感应现象中产生的电动势叫做感应电动势。
感应电动势分为感生电动势和动生电动势。
感生电动势的大小跟穿过闭合电路的磁通量改变的快慢有关系,E=ΔΦ/Δt. 产生动生电动势的那部分做切割磁力线运动的导体就相当于电源。
理论和实践表明,长度为l的导体,以速度v在此感应强度为B的匀强磁场中做切割磁感应线运动时,在B、L、v互相垂直的情况下导体中产生的感应电动势的大小为:ε=BLv 式中的单位均应采用国际单位制,即伏特、特斯拉、米每秒。
电磁感应现象中产生的电动势。常用符号E表示。当穿过某一不闭合线圈的磁通量发生变化时,线圈中虽无感应电流,但感应电动势依旧存在。当一段导体在匀强磁场中做匀速切割磁感线运动时,不论电路是否闭合,感应电动势的大小只与磁感应强度B、导体长度L、切割速度v及v和B方向间夹角θ的正弦值成正比,即E=BLvsinθ(θ为B,L,v三者间通过互相转化两两垂直所得的角)。
在导体棒不切割磁感线时,但闭合回路中有磁通量变化时,同样能产生感应电流。 应用楞次定律可以判断电流方向。 词条图册更多图册
法拉第电磁感应定律的重要意义
法拉第的实验表明,不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。这种现象称为电磁感应现象,所产生的电流称为感应电流。 法拉第根据大量实验事实总结出了如下定律:
电路中感应电动势的大小,跟穿过这一电路的磁通变化率成正比。 感应电动势用ε表示,即ε=nΔΦ/Δt 这就是法拉第电磁感应定律。
电磁感应现象是电磁学中最重大的发现之一,它揭示了电、磁现象之间的相互联系。法拉第电磁感应定律的重要意义在于,一方面,依据电磁感应的原理,人们制造出了发电机,电能的大规模生产和远距离输送成为可能;另一方面,电磁感应现象在电工技术、电子技术以及电磁测量等方面都有广泛的应用。人类社会从此迈进了电气
化时代。
麦克斯韦-法拉第方程
本节是一段题外话,作用是区分本条目中的“法拉第定律”及麦克斯韦方程组中用同一个名字的?×E方程。于本条目中?×E方程会被称为麦克斯韦-法拉第方程。如果你对此分别不感兴趣的话,可略过本节。
麦克斯韦于1855年开发出法拉第定律的旋度版本,而贺维塞得则于1884年将定律重写成旋度方程: 其中
E和B为电场及磁场?×代表的是旋度?代表的是当方位矢量r不变时的时间偏导数。 方程的意义是,如果,那么磁场会因时间而更少指电场的空间依赖在页面上成逆时针方向(经右手定律,得旋度矢量会从页面指出)
出页面,更多地指向页面(跟旋度矢量异号)。方程跟磁场的变量有关系。故磁场不一定要指向页面,只需向该方向转动即可。
本方程(在本条目中被称为麦克斯韦-法拉第方程)最著名的地方在于它是麦克斯韦方程组中的四条方程之一。
在麦克斯韦-法拉第方程中,亥维赛用的是时间偏导数。不使用麦克斯韦用过的时间全导数,而使用时间偏导数,这样做使得麦克斯韦-法拉第方程不能说明运动电动势。然而,麦克斯韦-法拉第方程很多时候会被直接称为“法拉第定律”。
在本条目中“法拉第定律”一词指的是通量方程,而“麦克斯韦-法拉第方程”指的则是亥维赛的旋度方程,也就是现在的麦克斯韦方程组中的那一条。 实际上电磁感应由能量附着而产生的。
定律成立的条件
概括的说,本定律要以现在公认的形式成立,则必有一个条件:磁单极子不存在。
基尔霍夫定律 基本信息
基尔霍夫定律Kirchhoff laws是电路中电压和电流所遵循的基本规律,是分析和计算较为
复杂电路的基础,1845年由德国物理学家G.R.基尔霍夫(Gustav Robert Kirchhoff,1824~
1887)提出。它既可以用于直流电路的分析,也可以用于交流电路的分析,还可以用于含有电子元件的非线性电路的分析。运用基尔霍夫定律进行电路分析时,仅与电路的连接方式有关,而与构成该电路的元器件具有什么样的性质无关。基尔霍夫定律包括电流定律和电压定律。
发现背景
基尔霍夫定律是求解复杂电路的电学基本定律。从19世纪40年代,由于电气技术发展
的十分迅速,电路变得愈来愈复杂。某些电路呈现出网络形状,并且网络中还存在一些由3
条或3条以上支路形成的交点(节点)。这种复杂电路不是串、并联电路的公式所能解决的,刚从德国哥尼斯堡大学毕业,年仅21岁的基尔霍夫在他的第1篇论文中提出了适用于这种网络状电路计算的两个定律,即著名的基尔霍夫定律。该定律能够迅速地求解任何复杂电路,从而成功地解决了这个阻碍电气技术发展的难题。基尔霍夫定律建立在电荷守恒定律、欧姆定律及电压环路定理的基础之上,在稳恒电流条件下严格成立。当基尔霍夫第一、第二方程组联合使用时,可正确迅速地计算出电路中各支路的电流值。由于似稳电流(低频交流电)具有的电磁波长远大于电路的尺度,所以它在电路中每一瞬间的电流与电压均能在足够好的程度上满足基尔霍夫定律。因此,基尔霍夫定律的应用范围亦可扩展到交流电路之中。
基本概念
1、支路:
(1)每个元件就是一条支路
(2)串联的元件我们视它为一条支路 (3)流入等于流出的电流的支路。
2、节点:
(1)支路与支路的连接点
(2)两条以上的支路的连接点 (3)广义节点(任意闭合面)。
3、回路:
(1)闭合的支路
(2)闭合节点的集合。
4、网孔:
(1)其内部不包含任何支路的回路
(2)网孔一定是回路,但回路不一定是网孔。
主要内容
基尔霍夫第一定律
第一定律又称基尔霍夫电流定律,简记为KCL,是电流的连续性在集总参数电路上的体现,其物理背景是电荷守恒公理。基尔霍夫电流定律是确定电路中任意节点处各支路电流之间关系的定律,因此又称为节点电流定律,它的内容为:在任一瞬时,流向某一结点的电流之和恒等于由该结点流出的电流之和,即:
基尔霍夫定律
在直流的情况下,则有:
基尔霍夫定律
通常把上两式称为节点电流方程,或称为KCL方程。
它的另一种表示为:
基尔霍夫定律
在列写节点电流方程时,各电流变量前的正、负号取决于各电流的参考方向对该节点的关系(是“流入”还是“流出”);而各电流值的正、负则反映了该电流的实际方向与参考方向的关系(是相同还是相反)。
通常规定,对参考方向背离(流出)节点的电流取正号,而对参考方向指向(流入)节点的电流取负号。
KCL的应用
图KCL的应用所示为某电路中的节点,连接在节点的支路共有五条,在所选定的参考方向下有:
基尔霍夫定律
KCL定律不仅适用于电路中的节点,还可以推广应用于电路中的任一假设的封闭面。即在任一瞬间,通过电路中任一假设封闭面的电流代数和为零。
KCL的推广
图KCL的推广所示为某电路中的一部分,选择封闭面如图中虚线所示,在所选定的参考方向下有:
基尔霍夫定律
基尔霍夫第二定律
第二定律又称基尔霍夫电压定律,简记为KVL,是电场为位场时电位的单值性在集总参数电路上的体现,其物理背景是能量守恒公理。基尔霍夫电压定律是确定电路中任意回路内各电压之间关系的定律,因此又称为回路电压定律,它的内容为:在任一瞬间,沿电路中的任一回路绕行一周,在该回路上电动势之和恒等于各电阻上
的电压降之和,即:
基尔霍夫定律
在直流的情况下,则有:
基尔霍夫定律
通常把上两式称为回路电压方程,简称为KVL方程。
KVL定律是描述电路中组成任一回路上各支路(或各元件)电压之间的约束关系,沿选定的回路方向绕行所经过的电路电位的升高之和等于电路电位的下降之和。
回路的“绕行方向”是任意选定的,一般以虚线表示。在列写回路电压方程时通常规定,对于电压或电流的参考方向与回路“绕行方向”相同时,取正号,参考方向与回路“绕行方向”相反时取负号。
KVL的应用
图KVL的应用所示为某电路中的一个回路ABCDA,各支路的电压在所选择的参考方向下为u1、u2、u3、u4,因此,在选定的回路“绕行方向”下有:u1+u2=u3+u4。
KVL定律不仅适用于电路中的具体回路,还可以推广应用于电路中的任一假想的回路。即在任一瞬间,沿回路绕行方向,电路中假想的回路中各段电压的代数和为零。
KVL的推广
图KVL的推广所示为某电路中的一部分,路径a、f 、c 、b 并未构成回路,选定图中所示的回路“绕行方向”,对假象的回路afcba列写KVL方程有:u4+uab=u5,则:uab=u5-u4。
由此可见:电路中a、b两点的电压uab,等于以a为原点、以b为终点,沿任一路径绕行方向上各段电压的代数和。其中,a、b可以是某一元件或一条支路的两端,也可以是电路中的任意两点。
KCL的复频域形式
从电路理论中已经知道,对于电路中的任一个节点A或割集C,其时域形式的KCL方程为
基尔霍夫定律
,k=1,2,3,……n,式中,n为连接在节点A上的支路数或割集C中所包含的支路数。对上式进行拉普拉斯变换得
基尔霍夫定律
式中,
基尔霍夫定律
为支路电流ik(t)的像函数。上式即为KCL的复频域形式。它说明集中于电路中任一节点A的所有支路电流像函数的代数和等于零;或者电路的任一割集C中所有支路电流像函数的代数和等于零。KVL的复频域形式 对于电路中任一个回路,其时域形式的KVL方程为
基尔霍夫定律
,k=1,2,3,……n。式中,n为回路中所含支路的个数。对上式进行拉普拉斯变换即得 ,式中,
为支路电压uk(t)的像函数。上式即为KVL的复频域形式。它说明任一回路中所有支路电压像函数的代数和等于零。
相关应用
基尔霍夫电流定律(KCL)描述了电路中各支路的电流之间的关系,基尔霍夫电压定律(KVL)描述了电路中各支路电压之间的关系,它们都与电路元件的性质无关,而只取决于电路的连接方式。所以我们把这种约束关系称为连接方式约束或拓扑约束,而把根据它们写出来的方程分别称为KCL约束方程和KVL约束方程。
传热学中的基尔霍夫定律
定律内容:在热平衡条件下,任何实际物体的辐射力与它对来自黑体辐射的吸收率的比值(这个比值仅仅是温度的函数,与材料的性质无关),恒等于同温度下黑体的辐射力。
另一种表述:热平衡时,任意物体对黑体投入辐射的吸收率等于同温度下该物体的黑度。
在热辐射的理论和应用中都占有很重要的地位,又成为基尔霍夫辐射 这是有关热辐射的基本定律中的一条,定律。
基尔霍夫定律的推论
1.在同温度下,物体的辐射力越大其吸收率也越大;即:善于辐射的物体必善于吸收。 2.对于灰体,因其单色吸收率与波长无关,在热平衡条件下不管辐射是不是来自黑体,成立。 3.同温度下黑体的辐射力最大。
4.对于实际情况,不处于热平衡条件下,只要是漫射灰表面,基尔霍夫定也适用。
基尔霍夫定律是怎么推导出来的
基尔霍夫定律的实质是稳恒电流情况下的电荷守恒定律 其中推导过程中推出的重要方程是电流的连续性方程
即SJ*dS=-dq/dt(第一个S是闭合曲面的积分号,J是电流密度矢量,*是矢量的点乘,dS是被积闭合曲面的面积元,dq/dt是闭合曲面内电量随时间的变化率)
意思是说电流场的电流线是有头有尾的,凡是电流线发出的地方,该处的正电荷的电量随时间减少,电流线汇聚的地方,该处的正电荷的电量随时间增加
对稳恒电流,电流密度不随时间变化,必有SJ*dS=-dq/dt=0,这就是稳恒电流的闭合性,同时也是基尔霍夫定律的推导基础
因篇幅问题不能全部显示,请点此查看更多更全内容