一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合M={x|0<x<4},N={x|≤x≤5},则M∩N=( )A.{x|0<x≤}C.{x|4≤x<5}
B.{x|≤x<4}D.{x|0<x≤5}
2.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是( )
A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元
D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3.已知(1-i)2z=3+2i,则z=( )A.-1-iC.-+i
B.-1+iD.--i
4.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lgV.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为( )(≈1.259)A.1.5B.1.2C.0.8D.0.65.已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为( )A.C.
B.D.
6.在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A-EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A.
B.
C.D.
7.等比数列{an}的公比为q,前n项和为Sn.设甲:q>0,乙:{Sn}是递增数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
8.2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影A',B',C'满足∠A'C'B'=45°,∠A'B'C'=60°.由C点测得B点的仰角为15°,BB'与CC'的差为100;由B点测得A点的仰角为45°,则A,C两点到水平面A'B'C'的高度差AA'-CC'约为( )(≈1.732)
A.346B.373C.446D.473
9.若α∈(0,A.C.
),tan2α=,则tanα=( )
B.D.
10.将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A.B.C.
D.
11.已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O-ABC的体积为( )A.C.
B.D.
12.设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax
2+b.若f(0)+f(3)=6,则f(
)=( )
B.-D.
A.-C.
二、填空题:本题共4小题,每小题5分,共20分。13.曲线y=
在点(-1,-3)处的切线方程为
.
.
14.已知向量=(3,1),=(1,0),=+k.若⊥,则k=15.已知F1,F2为椭圆C:
+
=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1
.
F2|,则四边形PF1QF2的面积为
16.已知函数f(x)=2cos(ωx+φ)的部分图像如图所示,则满足条件(f(x)-f(-))(f(x)-f())>0的最小正整数x为
.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须
作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
17.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
一级品
甲机床乙机床
150120
二级品5080
合计200200
合计270130400
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?
(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:K2=P(K2≥k)k
0.0503.841
.
0.0106.635
0.00110.828
18.已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.
①数列{an}是等差数列;②数列{}是等差数列;③a2=3a1.
注:若选择不同的组合分别解答,则按第一个解答计分.19.已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分
别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE;
(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?
20.抛物线C的顶点为坐标原点O,焦点在x轴上,直线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⊙M与l相切.(1)求C,⊙M的方程;
(2)设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与⊙M相切.判断直线A2A3与⊙M的位置关系,并说明理由.21.已知a>0且a≠1,函数f(x)=
(x>0).
(1)当a=2时,求f(x)的单调区间;
(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)
22.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.
(1)将C的极坐标方程化为直角坐标方程;
(2)设点A的直角坐标为(1,0),M为C上的动点,点P满足=,写出P的轨迹C1的参
数方程,并判断C与C1是否有公共点.[选修4-5:不等式选讲](10分)
23.已知函数f(x)=|x-2|,g(x)=|2x+3|-|2x-1|.
(1)画出y=f(x)和y=g(x)的图像; (2)若f(x+a)≥g(x),求a的取值范围.
因篇幅问题不能全部显示,请点此查看更多更全内容