您的当前位置:首页正文

Pspice模型参数

来源:个人技术集锦
附件A、三极管的Pspice模型参数

.Model NPN(PNP、LPNP) [model parameters] 模型参数 含 义 单 位 AF flicker noise exponent BF ideal maximum forward beta BR ideal maximum reverse beta CJC base-collector zero-bias p-n capacitance farad CJE base-emitter zero-bias p-n capacitance farad CJS (CCS) Substrate zero-bias p-n capacitance farad EG bandgap voltage (barrier height) eV FC forward-bias depletion capacitor coefficient GAMMA epitaxial region doping factor IKF (IK) corner for forward-beta high-current roll-off amp IKR corner for reverse-beta high-current roll-off amp IRB current at which Rb falls halfway to amp IS transport saturation current amp ISC (C4) base-collector leakage saturation current amp ISE (C2) base-emitter leakage saturation current amp ISS substrate p-n saturation current amp ITF transit time dependency on Ic amp KF flicker noise coefficient MJC (MC) base-collector p-n grading factor MJE (ME) base-emitter p-n grading factor MJS (MS) substrate p-n grading factor NC base-collector leakage emission coefficient NE base-emitter leakage emission coefficient NF forward current emission coefficient NK high-current roll-off coefficient NR reverse current emission coefficient NS substrate p-n emission coefficient 默认值 1.0 100.0 1.0 0.0 0.0 0.0 1.11 0.5 1E-11 infinite infinite infinite 1E-16 0.0 0.0 0.0 0.0 0.0 0.33 0.33 0.0 2.0 1.5 1.0 0.5 1.0 1.0 备 注 噪声指数 最大正向放大倍数 最大反向放大倍数 集电结电容 发射结电容 饱和电流 集电结漏电流 发射结漏电流 噪声系数 集电结漏电系数 发射结漏电系数 正向电流系数 第 1 页 共 9页

PTF degree excess phase @ 1/(2•TF)Hz QCO epitaxial region charge factor coulomb RB zero-bias (maximum) base resistance ohm RBM minimum base resistance ohm RC collector ohmic resistance ohm RCO epitaxial region resistance ohm RE emitter ohmic resistance ohm TF ideal forward transit time sec TR ideal reverse transit time sec 0TRB1 RB temperature coefficient (linear) C -1 0-2TRB2 RB temperature coefficient (quadratic) C 0TRC1 RC temperature coefficient (linear) C -1 0-2TRC2 RC temperature coefficient (quadratic) C 0TRE1 RE temperature coefficient (linear) C -1 0-2TRE2 RE temperature coefficient (quadratic) C 0TRM1 RBM temperature coefficient (linear) C -1 0-2TRM2 RBM temperature coefficient (quadratic) C 0T_ABS absolute temperature C 0T_MEASURED measured temperature C 0T_REL_GLOBAL relative to current temperature C 0T_REL_LOCAL relative to AKO model temperature C VAF (VA) forward Early voltage volt VAR (VB) reverse Early voltage volt VJC (PC) base-collector built-in potential volt VJE (PE) base-emitter built-in potential volt VJS (PS) substrate p-n built-in potential volt VO carrier mobility knee voltage volt VTF transit time dependency on Vbc volt XCJC fraction of CJC connected internally to Rb XCJC2 fraction of CJC connected internally to Rb XTB forward and reverse beta temperature coefficient XTF transit time bias dependence coefficient XTI (PT) IS temperature effect exponent

0.0 0.0 0.0 RB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 infinite infinite 0.75 0.75 0.75 10.0 infinite 1.0 1.0 0.0 0.0 3.0 最大基极电阻 最小基极电阻 正向传递时间 反向传递时间 RB的温度系数 正向和反向放大倍数的温度影响系数 传递时间系数 IS的温度影响系数 第 2 页 共 9页

附件B、 PSpice Goal Function

特征函数 Bandwidth (1, db_level) BPBW (1, db_level) CenterFreq (1, db_level) Falltime (1) Gain Margin (1,2) GenFall (1) GenRise (1) HPBW (1, db_level) LPBW (1, db_level) Maxr (1, begin-x, end-x) Overshoot (1) Peak (1, n_occur) Period (1) Phase Margin (1,2) Pulsewidth (1) Risetime (1) Swingr (1, begin-x, end-x) TPmW2 (1, Period) XatNthy (1, Y-value, n-occur) XatNthYn(1,Y_value,n_occur) XatNthYp(1,Y_value,n_occur) XatNthYpct(1,Y_PCT,n_occur) YatX(1,X_value) YatXpct(1,X_pct) 功能说明 计算波形1从最大值下降db_level db的波形宽度。 Same as Bandwidth (1, db_level) 计算波形1从最大值下降db_level db的两点的中心频率。 计算波形1的下降时间。 计算波形1的相位为-180。时,波形2的分贝值。 类似于Falltime (1),但它的下降时间相对的y轴是起点于终点,而不是最大值与最小值。 与GenFall (1)类似,只是它是上升时间。 查找第一次比最大值低db_level db的x坐标。(上升沿) 与HPBW类似,只是用于下降沿。 查找区间的最大值。 计算最大值与终点之间y轴坐标差与终点值的百分比。 查找第n-occur个峰值点的Y值 计算波形1的周期。 查找波形1在0分贝时波形2的相位。 计算波形1的脉冲宽度。 计算波形1的上升时间。 计算在指定范围内,波形1的最大值与最小值之差。 查找波形1上第n-occur个Y-value值时的X坐标值。 与XatNthy类似,但它查找的Y值必须在下降沿上。 与XatNthy类似,但它查找的Y值必须在上升沿上。 查找第n-occur个Y轴值为Y轴范围的Y_pct%时的X轴值。 查找X-value值处的Y值。 查找X轴值为X轴范围的X_pct%时的Y轴值。 第 3 页 共 9页

附件C

Modeling voltage-controlled and temperature-dependent resistors

Analog Behavioral Modeling (ABM) can be used to model a nonlinear resistor through use of Ohm抯 law and tables and expressions which describe resistance. Here are some examples.

Voltage-controlled resistor

If a Resistance vs. Voltage curve is available, a look-up table can be used in the ABM expression. This table contains (Voltage, Resistance) pairs picked from points on the curve. The voltage input is nonlinearly mapped from the voltage values in the table to the resistance values. Linear interpolation is used between table values. Let抯 say that points picked from a Resistance vs. Voltage curve are:

Voltage 0.5 1.0 2.0 Resistance 25 50 100 The ABM expression for this is shown in Figure 1.

第 4 页 共 9页

Figure 1 - Voltage controlled resistor using look-up table

Temperature-dependent resistor

A temperature-dependent resistor (or thermistor) can be modeled with a look-up table, or an expression can be used to describe how the resistance varies with temperature. The denominator in the expression in Figure 2 is used to describe common thermistors. The TEMP variable in the expression is the simulation temperature, in Celsius. This is then converted to Kelvin by adding 273.15. This step is necessary to avoid a divide by zero problem in the denominator, when T=0 C.

NOTE: TEMP can only be used in ABM expressions (E, G devices).

Figure 3 shows the results of a DC sweep of temperature from -40 to 60 C. The y-axis shows the resistance or V(I1:-)/1A.

Figure 2 - Temperature controlled resistor

第 5 页 共 9页

Figure 3 - PSpice plot of Resistance vs. Temperature (current=1A)

Variable Q RLC network

In most circuits the value of a resistor is fixed during a simulation. While the value can be made to change for a set of simulations by using a Parametric Sweep to move through a fixed sequence of values, a voltage-controlled resistor can be made to change dynamically during a simulation. This is illustrated by the circuit shown in Figure 5, which employs a voltage-controlled resistor.

第 6 页 共 9页

Figure 4 - Parameter sweep of control voltage

This circuit employs an external reference component that is sensed. The output impedance equals the value of the control voltage times the reference. Here, we will use Rref, a 50 ohm resistor as our reference. As a result, the output impedance is seen by the circuit as a floating resistor equal to the value of V(Control) times the resistance value of Rref. In our circuit, the control voltage value is stepped from 0.5 volt to 2 volts in 0.5 volt steps, therefore, the resistance between nodes 3 and 0 varies from 25 ohms to 100 ohms in 25 ohm-steps.

第 7 页 共 9页

Figure 5 - Variable Q RLC circuit

A transient analysis of this circuit using a 0.5 ms wide pulse will show how the ringing differs as the Q is varied. Using Probe, we can observe how the ringing varies as the resistance changes. Figure 6 shows the input pulse and the voltage across the capacitor C1. Comparing the four output waveforms, we can see the most pronounced ringing occurs when the resistor has the lowest value and the Q is greatest. Any signal source can be used to drive the voltage-controlled resistance. If we had used a sinusoidal control source instead of a staircase, the resistance would have varied dynamically during the simulation.

第 8 页 共 9页

Figure 6 - Output waveforms of variable Q RLC circuit

通过几天来的补习,我认为IS只是等于Icb0; 而VAF才是VCE0就是最高管耐压; 而IKF才是ICE0最大管电流; BF是放大倍数没错了,

不知各位师傅有没有别的看法呢?

.MODEL MOD1 NPN IS=1E-6 BF=50 RB=100 VAF=160 CJC=3P 3DG201

第 9 页 共 9页

因篇幅问题不能全部显示,请点此查看更多更全内容