您的当前位置:首页正文

教育教学的心得体会范文

2020-09-30 来源:个人技术集锦

  一、在鼓励独创中,培养学生的发散思维能力。

  在分析和解决问题的过程中,学生能别出心裁地提出新异的想法和解法,这是思维独创性的表现。尽管小学生的独创从总体上看是处于低层次的,但它却蕴育着未来的大发明、大创造,教师应满腔热情地鼓励他们别出心裁地思考问题,大胆地提出与众不同的意见与质疑,独辟蹊径地解决问题,这样才能使学生思维从求异、发散向创新推进。如解答“北京到青岛的铁路长900千米,一列火车4小时行驶了全程的1/3。照这样计算,从北京到青岛大约需要几小时?而有一个学生却说:“只须4÷1/3就行了”。他的理由是:“4小时行了全程的1/3,也就是4里面有几个1/3“从他的回答中,可以看出他的思路是跳跃的,省略了许多分析的步骤。这种独创性应该给予鼓励。独创往往蕴含于求异与发散之中,经常诱导学生思维发散,才有可能出现超出常规的独创;反之,独创性又丰富了发散思维,促使思维不断地向横向与纵向发散。

  二、在多种形式的训练中,培养学生的发散思维能力。

  在小学数学教学过程中,教师可结合教学内容和学生的实际情况,采取多种形式的训练,培养学生思维的敏捷性和灵活性,以达到诱导学生思维发散,培养发散思维能力的目的。

  1.一题多变。对题中的条件、问题、情节作各种扩缩、顺逆、对比或叙述形式的变化,让学生在各种变化了的情境中,从各种不同角度认识数量关系。

  4÷1/3时,丙单独做需要15小时。如果三个人合做,多少小时可以完成?

  解答后,要求学生再提出几个问题并解答,可能提出如下一些问题:甲单独做,每小时完成这批零件的几分之几?乙呢?丙呢?

  甲、乙合做多少小时可以做完?乙、丙合做呢?

  甲单独先做了3小时,剩下的由乙、丙做,还要几小时做完?

  甲、乙先合做2小时,再由丙单独做8小时,能不能做完?

  甲、乙、丙合做4小时,完成这批零件的几分之几?

  通过这种训练不仅使学生更深入地掌握工程问题的结构和解法,还可预防思维定势,同时也培养了发散思维能力。

  2.一题多解。在条件和问题不变的情况下,让学生多角度、多侧面地进行分析思考,探求不同的解题途径。一题多解的训练是培养学生发散思维的一个好方法。它可以通过纵横发散,使知识串联、综合沟通,达到举一反三、融会贯通的目的。

  例如,甲乙两地相距200千米。一辆货车,从甲地开往乙地,前3小时行了全程的2/5,照这样的速度,行全程需要多少小时?

  解法一:

  200 ÷(200X2/5÷3)或1÷(2/5÷3)

  从倍数关系考虑可得解法二:3X〔200÷(200X2/5)〕或3X(1÷2/5)用列方程的办法得解法三:设行完全程需要X小时。

  200÷X=200×2/5÷3

  从时间+路程=单位路程所需的时间,可得解法四: 3÷2/5如果把全程看作5个单位则可获得下列解法:解法五:(3÷2)x5解法六: 3x(5÷2)解法七: 2/3=5/X;综上所述,在小学数学教学中,我们要在多方面时刻注意培养学生的发散思维能力。但是值得注意的是,如果片面地培养学生的发散思维能力,就会失之偏颇。在思维向某一方向发散的过程中,仍然需要集中思维的配合,需要严谨的分析、合乎逻辑的推理,在发散的多种途径、多种方法中,也需要通过比较判断,获得一种最简捷、最科学的方案与结果。所以,思维的发散与集中犹如鸟之双翼,需要和谐配合,才能使学生的思维发展到新的水平。

因篇幅问题不能全部显示,请点此查看更多更全内容